EXTRACTS

FROM
NARRATIVE REPORTS
OF OFFICERS OF THE

FOR THE SEASON
1907-08

PREPARED UNDER THE DIRECTION OF
COLONEL F. B. LONGE, R.E. SURVEYOR GENERAL OF INDIA

CONTENTS

I.- The Magnetic Survey of India
II.- Tidal and Levelling Operations
III.-Astronomical Latitudes
IV.-PENDULUM Operations
V.-Extract fron the Narrative Reports of No. if Party

CALCUTTA
SUPERINTENDENT GOVERNMENT PRINTING, INDIA 1910

Surven of Enìia

EXTRACTS

FROM

NARRATIVE REPORTS

FOR TIIE SEASON
$1907 \% 8$

Agents for the Sal: of Books published by the Superintendent of Guvernment Printing, India, Calcutia.

In England.
E. A. Arnold, 41 and 43, Maddox Street, Bond Street,
London, W.
Constable \& Co., 10, Orange Street, Leicester
Square, W. C.
Grindlay \& Co., 54, Parliament Street, London,
S. W.
H S. King \& Co., 65, Cornhill, and 9, Pall Mall,
Londun, E. C.
P. S. King \& Son, 2 and 4, Great Smith Street, P. S. King \& Son, 2 and 4, Great Smith Street, Westminster, London, S. W.
Kbgan Paul, trench, Trubier \& Co., 43, Gerrard Street, Soho, London, W.
Bernard Quaritch, 1), Grafton Street, New Bond Street, W.
R. H. Blackwbll, 50 and 51, Broad Street, Cxford. Dbightos, Bell \& Co., Cambridge.
T. Fisher Unwin, i, Adelphi Terrace, London, W. C.
W. Thacker \& Co., 2, Creed Lane, London.
l.vzac \& Co., 46, Great Russell Street, London, i.. C.

> On the Continent.
r. Friedlánder \& Sobe, in, Carlstrasse, Berlin, IN. W.
(Jtto Harrassowitz, Leipzig, Germany.
karl Higrsemann, Leipzig, Germany.
Pernoly Haupt, I, Dorrienstrasse, Leipzig, Gerinany.
Lhiest T.enouy, 28. Rué Bonaparte, Paris.
ihalitinus Numorf, The Ilaguc, Holland.
in Inila.
Thacker, Spink \& Co., Calculta and Simla. Nbwman \& Co., Calculta.
S. K. Lahtri\& Co., Calcutta.
R. Cambray \& Co., Calcutta.
B. Banerja \& Co., Calcutia.

Higginbotham \& Co., Madras.
V. Kalyanarama Aivar \& Co., Madras.
G. A. Natisan \& Co., Madras.

Thompson \& Co., Madras.
Mukthy \& Co., Madras.
Temple \& Co., Madras.
Combridgr \& Co., Madras.
A. R. Pillat \& Co., Trivandrum.

Thacker \& Co., Ld., Bombay.
A. J. Conbrider \& Co., Bombay.
D. B. Taraporevala, Sone \& Co., Bombay.

Radhabai Atmaram Sagoon, Bombay.
N. B. Mathur, Superintendent, Nazair Kanun Hind Press, Allahabad.
Rai Sahia M. Gulab Singh \& Sons, Mufidi-Am Press, Lahore.
Supbrintendrnt, American Baptist Mission Press, Rangoun.
Sunder Pandurana, Bombay.
A. M. \& J. Ferguson, Ceylon.
A. Chand \& Co., Lahore, Punjab.
P. R. Rama lyar \& Co., Madias.

Gopal Narayan \&- Co., Bombay.
Eabu S. C. Talurdar, Profrietor, Stujents and Company, Cooch Beliar.

EXTRACTS

FROM

NARRATIVE REPORTS

OF OFFICERS OF THE

Stan Subly of fndia

FOR THE SEASON

$1907=08$

prepared under the direction or
Colonel F. B. LONGE, R.E.
surveyor general of india

CONTENTS
I.-The Magnetic Survey of India
II.-Tidal and Levelling Operations
III.-Astronomical Latitudes
IV.-Pendulum Operations
V.--Extract from the Narrative Reports of No. is Party

CALCU'TTA

CONTENTS.

I.-The Magnetic Survey of India 1
11.-Tidal and Levelling Operations 63
III.-Astronomical Latitudes 98
IV.-Penfulum Operations 104
V.-Extract from the Narrative Reports of No. : i Party 118

I

NO. 26 PARTY (MAGNETIC).

Annual Report. Season 1907-08.

Personnel.

Imparial Officers.
Captain R. H. Thomas, R.e., in charge to 3ist March 1908.
Lieutenant H. J. Couchman, r.e., in charge from ist April 1908.
Lieutenant H. T. Morshead, r.e., from 16th August 1908.

Provincial Officers.

The personnel of the party is given in the margin.

Messrs. E. C. J. Bond, and H. P. D. Morton, Babus R. P. Ray, N. R. Mazumdar and R. B. Mathur.

Subordinato establishment.
2 Observers, i3 Recorders, 1 Computer, 2 Surveyors and I Writer.
000. The health of the party was on the whole satisfactory; two khalásis however died of cholera on returning from the field, and one recorder suffered from fever in Burma.

THE MAGNETIC SURVEY IN 1907-08.
The present report deals with the work of the Magnetic Survey in 1907-08.
The report is divided into three main heads as follows:-
I. A brief account of the operations in the field and recess quarters, with a table of the preliminary values of the magnetic elements at field and repeat stations in 1907-08, and an index chart showing the positions of all stations of observation up to date.
Notr.-For convenience of reference the table of preliminary values and index chart are placed at the end of Part III.
11. The working of the magnetic observatories in 1907-08.
III. Tables of results at the magnetic observatories in 1907 .
I.-Field Operations in 1907•08.
I. Work of the field detachments.
2. Work of the Imperial officers.
3. Work during recess-

Diurnal variation correction.
Disturbance correction.
Isomagnetic charts.
4. Comparison of instruments with the survey standard.
5. Values of the distribution co-efficient P. for the field instruments.
6. Programme for 1908 -09.
7. Results included in this report.

1. Work of the field detachmenis.-The field season opened on October 21st 1907, and closed early in May 1908. Four neld detachments were employed during the year under report; three of these worked in Burma and the tourth in Berar, Orissa and Assam. One of the Burma detachments, however, was withdrawn from magnetic work for three months in order to carry out some triangulation for the Chin-Lushai-Arakan boundary, while another, owing to the early break of the rains in south Burma, could not complete its programme. For these reasons, and owing to the difficult country met with, the outturn of new stations was only 80 , bringing the total number of stations to date to $\mathbf{1 , 2 1 4}$ with 22 repeat stations.
2. Work of the Imperial Officers.-Two imperial officers were available up to the end of March, when the officer in charge proceeded on furlough. The four observatories were inspected and comparative observations carried out at each and also at Alibág. Vertical force magnets of the new pattern were mounted at the Barrackpore ane Kodaikánal observatories and satisfactory adjustments made of their temperature co-efficients, the values found being $-3^{\circ} \circ \gamma$ and $+5^{\circ} 2 \gamma$ per $+1^{\circ} \mathrm{F}$. respectively. In addition to those at the 22 repsat stations, observations were made at 31 old field stations suitably situated between repeat stations, in order to obtain further values of the secular change in the magnetic elements.

Lieutenant H. T. Morshead, r.E., was posted to the party in August 9003 and has now been trained in magnetic observations.
3. Work during recess.-During the recess season the computation of the previous season's field work, and the reduction and tabulation of the base station results for 1907 have been completed (vide Part III). The whole of the base line values of the horizontal force magnetographs have been re-computed, using the value of $\frac{m}{\mathrm{H}^{-}}$obtained from the deflection observations, combined with the mean value of the moment of the magnet (m_{0}) for the period, to obtain the value of H . Formerly the practice has been to obtain H . by combining the $\mathrm{m} H \mathrm{H}$ and $\frac{\mathrm{m}}{\mathrm{H}}$ of the vibration and deflection observations. Now the probable error of a vibration observation is considerably larger than that of a deflection observation, owing to the difficulty of the former operation, and it is therefore preferable to use the deflection observation only in computing H . To do this, however, we must know the value of m , and as this is ordinarily fairly constant, we can obtain a sufficiently accurate value by combining a large number of vibrations and deflections. The values of the base lines obtained by this method agree well inter se, and the practice will be continued. The same process has been employed in computing H in the feld observations, the values of m obtained being carefully scrutinised and divided into groups, where there has been any change.

The comparisons of instruments in H. F. with the survey standard magnetometer, No. 17 at Dehra Dún, from the begimning of the survey have been recomputed by this method, and the results, which are given below, shew that while the field instruments ordinarily remain fairly constant during the working season, changes often occur during the recess. This is fortunate (though somewhat difficult to understand) as a constant instrumental correction can be applied throughout any one field season. The change from year to ycar can as a rule be explained by postulating a change in $\log \pi^{2} \mathrm{~K}$, but only on the assumption that the change occurs during the recess. The question, however, is of small importance, from the point of view of the reduction of the survey, and need not be considered for the present.

The correction of the borizontal force and declination observations for diurnal variation has been commenced, the formula used being the empircial one given
in ast year's report, viz:-

$$
h_{p}=h_{2}+k\left(h_{b}-h_{2}\right) \text { where } k=\frac{\text { lat }_{2}-l_{a} t_{p}}{\text { lat }_{2}-l_{a} t_{b}} .
$$

Two values of h_{p} are found by using the three observatories nearest to the station under correction and a mean taken: The agreement between the two values- of h_{p} is extraordinarily good for all except the south of India; as the subjoined table will shew.

Difference between two values of $h_{\text {p }}$	Number.		Remaris.
0γ	96		
I	124		
2	67		
3	33	12 from Kodaikánal.	
4	5	3 "	"
5	7	all "	"
6 to 14	12	all "	"

It will thus be seen that when Kodaikánal is one of the base stations used to determine the diurnal variation correction, the probable error of this correction is commonly large, and it is therefore evident that, either the diurnal variation figures of Kodaikanal are abnormal owing to the fact that the observatory is situated on magnetic rock, or the latitude formula does not hold good in low magnetic latitudes.

To determine which of these alternatives is correct, it is intended, during this field season, to take hourly observations of force for 5 or 6 days at some place in the extreme south of India and also probably in Lower Burma. By comparing the results thus obtained with the magoetograph traces at Kodaikánal it is hoped that some light will be thrown on the question.

Investigations into the correction for disturbance have been continued, the The disturbance correction. method employed being as follows. A number of points in a disturbed trace are selected haphazard and the values of force determined in the usual way. From these values the normal value of the paticular moment is deducted and the residual thus represents the amount of the disturbance correction. (The normal value is obtained by interpolation from the hourly mean values of the selected quiet days.) Similar points at the same absolute time at the other observatories are similarly dealt with, and residuals obtained, which are compared inter se. The agreement between these residuals is often good, and there is occasionally evidence of a latitude change; but in many-cases there-seems to be no possible method of connecting the residuals; as the following tables will shew. .

TABLE: A.
Examples of agreement betrween residuals or of latitude change:-

Dehra Dún, Lat. $3^{\circ} 3$.	Barractspore, Lat. $22^{\circ}{ }^{\circ} 8_{\text {. }}$	Toungoo, Lat. 8^{80} g:	Kodaikánal, Lat. $10^{\circ} 2$.	!
$+13$	+ 10	+9	$+10$	
+	-1	+3	+ 1	,

TABLE A-contd.

Dehra Dún, Lat. $30^{\circ} 3$.	Barrackpore, Lat. $22^{\circ} 8$.	Toungoo, Lat. $18^{\circ} 9$.	Kodaikánal, Lat. $10^{\circ} 2$.	
+ 12	$+10$	+11	+ 15	
+ 12	+13	+19	$+12$	
$+16$	+13	+13	$+15$	
$+24$	$+29$	$+20$	+22	
-33	-32	-32	-38	
$-8 y$	-92	-90	-83	
-19	-20	-22	-27	Latitude.
- 12	- II	-4	+3	"
- 11	-16	-18	-25	"
+ 5	-2	-4	- 11	"
-35	-39	-4I	-47	"
+2	-2	-6	-8	"

TABLE B.
Examples of non-agreement between residuals :-

Dehra Dún.	Barrackpore.	Toungoo.	Kodaikánal:
-21	-21	-22	-8
+56	+43	+37	+45
-22	-27	-12	-32
-20	-21	-39	-34
-56	-57	-57	-30
-51	-30	-14	-10
-16	-39		

Examples could be multiplied, but the above will shew that ordinarily it is only one observatory that is at fault, and that the disturbance correction at any station can be obtained by computing the correction at three base stations but that occasionally cases will occur where considerable uncertainty will exist. For example, in the $4^{\text {th }}$ line in Table B, where we have two pairs of accordant values, it would be impossible to determine, with any certainty, the amount of correction to be applied to an observation at a station whose latitude was between that of Barrackpore and Toungoo.

The investigation will be continued, mainly in order to ascertain whether such uncertainties occur sufficiently frequently to necessitate a more rigid
investigation on the lines suggested by Sir A. Rücker, F.R.S., mentioned in last year's report. This method, however, is somewhat laborious, and it is hoped that it will not be necessary to employ it. It must be remembered that at present only magnetic disturbances of considerable magnitude have been dealt with, and as these are comparatively rare, a few discrepancies are not of much consequence.

During the recess, charts have been prepared showing lines of equal horizontal force declination and dip. These are based on uncorrected observations only, though a rough secular change correction has been applied. They can, therefore, only be regarded as preliminary, and their chief use will be to indicate abnormal areas, where detail survey will be necessary.

The charts have been published in the general report for 1907.08, together with a short explanatory note.
4. Comparison of instruments with the Survey Standard.-All the field instruments were as usual compared with the standard instruments at Dehra Dún at the beginning and end of the field season and the results of these comparisons and also the re-computed comparisons of previous years are given in the tables below.
Tables of Instrumental Differences from the Survey Standard at Dehra Dún.

TABLE I .

Horizontal Force.

Expressed in absolute units (C. G. S.)

$\begin{gathered} \text { Magneto- } \\ \text { meter } \\ \text { No. } \end{gathered}$	1903-03.		1903-04,		1904-05.		1905-06.		1906-07.		1907-08.	
	Begimning.	End.	Beginning.	End.	Beginning.	End.	Beginning.	End.	Begianing.	End.	Beginning.	End.
I	$+6\{$ Mean. $\{$	$\begin{array}{r} +3(a) \\ -3(c) \\ +5(a) \\ 0(c) \end{array}$	$\begin{cases}\} & +1 \\ \} & \end{cases}$	$+5$ $\text { + } 3$	$\begin{array}{ll} 0 & \{ \\ & \{ \end{array}$	$\begin{array}{r} +6(b) \\ +14(c) \\ +3(b) \\ +10(c) \end{array}$						
1 (2A)	Mean.						-5	-4 -5	-2	-14 -6	-18	$\begin{aligned} & -27 \\ & -23 \end{aligned}$
3	$+15$ Mean.	$\begin{aligned} & +14 \\ & +15 \end{aligned}$	+ 20	$\begin{aligned} & +23 \\ & +22 \end{aligned}$	+23	$\begin{aligned} & +20 \\ & +25 \end{aligned}$	+23	$\begin{aligned} & +21 \\ & +22 \end{aligned}$	+ 11	$\begin{aligned} & +2 \\ & +6 \end{aligned}$	-2	-1 -1
4	$+34$ Mean.	$\begin{aligned} & +26 \\ & +30 \\ & \hline \end{aligned}$	+10	$\begin{aligned} & +1 \\ & +6 \end{aligned}$	+ 24	$\begin{aligned} & +30 \\ & +27 \end{aligned}$	-4	-6 -5	-8	-2 -5	-14	$\begin{aligned} & -16 \\ & -15 \end{aligned}$
5	-13 Mcan.	$\begin{gathered} \text { No } \\ \text { compari- } \\ \text { son. } \\ -13 \end{gathered}$	+2	-3	$+13$	$+17$ $+15$	+29	$+23$ $+26$	+ 21	$+6$ $+14$	-9	-8 -9
6	-26 Mean.	$\begin{aligned} & -29 \\ & -28 \end{aligned}$	-17	$\begin{aligned} & -11 \\ & -14 \end{aligned}$	-14	$\begin{aligned} & -30 \\ & -17 \end{aligned}$	-7	-27 -17	-15	-33 -24	-30	-29 -29
10	Mean.		+8	$+13$ $+11$	$+13$	$\begin{gathered} \text { No } \\ \text { compari- } \\ \text { son. } \\ +13 \end{gathered}$	+35	$+26$ $\text { + } 31$	-18	+23 +20	$+17$	+1 +15
(a) Up to 12 th March 1903. (b) ${ }^{\prime \prime} 14^{\text {th }}$ February 1905. (c) Rest of held season												

It must, however, be remembered that the horizontal force correction of a magnetometer, expressed in absolute units, will not remain constant with a change in the magnetic field, but varies as the value of horizontal force at the station of observation. The correction is thus of the form F. H., with at least very close approximation. Table I A gives the values of F for, the different magnetometers in different years.

TABLE I A.
Horizontal Force,
Values of F appearing in the expression $F . H$.

Magnetometer No.	1902-03.	1903-04.	1904-05.	1905-06.	1006-07.	1907-08.
$1 \quad\{$	$\left[\left.\begin{array}{cc} +0001 & 5(a) \\ 0 & (c) \end{array} \right\rvert\,\right.$	$+000009$	$\left\|\begin{array}{l} +\cdot 00018(b) \\ +\cdot 00030(c) \end{array}\right\|$			
19 sa				-00015	-.00024	-*00069
3	+ ${ }^{\circ} 00045$	+ ${ }^{\circ} 00066$	+ 00066	+'00066	+*0018	--00006
4	+ ${ }^{\prime} 00090$	+ 00018	+.00081	-.00015	-.00015	-'00045
5	-.00039	0	+'00045	+-00078	+ 00042	--00027
6	-.00084	- ${ }^{\circ} 00042$	-.00051	-.00051	--00072	$-\cdot 00087$
10		+ 00033	+'00039	+'00093	+ 00060	+ 00045

(a) Up to I2th March 1903.
(b) ", 1 th February 1905.
(c) Rest of Field Season.

TABLE II.
Declination and Dip.

Declination.			Dir.		
Magnetometer.	Beginning of field season $1907-08$.	End of field season 1907-03.	Earth Inductor No. $30-$ Dip circle No.	Beginning of field season 1907-08.	End of field season 1907-08.
1	$+0^{\prime} \cdot 2$	- -o ${ }^{\prime} \cdot 0$	135	$-2^{\prime \prime} 7$	-1'5
3	-0.0	-0.1	136	-1.8	$+13$
4	-0.7	-0.6	138	$+26$	+ 5.5
				+ $0^{1} 1(a)$	$+4.6$
5	-0.5	-0.4	139	$-0.1(b)$	
6	+0.3	+0.1	140	-0.2	+29
10	-0.0	+0. 1	170	-0.3	+16

(a) Up to 17 th February needles 4 D and 2 used.
(b) From 7th April $\quad 4$ C 2 ".
5. Values of the distribution co-cfficient P for the field instruments. - The table below gives the "near" values of $P_{1,2}$ and $P_{1 ;}$ for the field instruments.

The same arrangement of the deflection distances as last year has been used and from each complete observation one " near" and one "far" value of $P_{1 \cdot 2}$ and $\mathrm{P}_{2 \text { a }}$ are obtained.

The far values, being of less weight, are not used in computing $\frac{M}{H}$ and have not been shown.

TABLE A.

	P_{1-2} From $22^{\prime} \mathrm{S}$ and 30 cms.					$\mathrm{P}_{2}-\mathrm{g}$ PROM 30 AND 40 cms .					Values for 1906-07.	
											$\stackrel{\sim}{\square}$	$0_{0}^{\text {a }}$
2 A	7.23	7.26	82	17	65	$9 \cdot 28$	9'29	157	46	III	$73^{\prime 2}$	941
3 A	$6 \cdot 20$	6.21	38	I	37	737	736	43	5	38	6.13	733
4 A	7.59	759	46	Nil	46	8.59	$8 \cdot 64$	54	8	46	760	8.53
5 A	7.21	721	46	Nil	46	8.16	8. 17	95	13	82	730	8. 12
6 A	788	788	24	$N i l$	24	8.06	8.14	37	11	26	7790	8.06
10	5.81	5.82	55	4	51	$7 \cdot 36$	734	80	20	60	577	$7{ }^{15}$

The values of p and q appearing in the formula $\mathbf{x}-\frac{p}{r^{2}}-\frac{q}{r^{4}}$ (as distinct from the expression $1-\frac{\mathrm{P}}{\mathrm{r}^{2}}$ commonly used in the computation of $\frac{\mathrm{m}}{\mathrm{H}}$)are given below, together with the values of $\log \left(\mathrm{r}-\frac{\mathrm{p}}{\mathrm{r}^{2}}-\frac{q}{\mathrm{r}^{4}}\right)$ and the change in H at Dehra Dún if the ' q ' term is taken into account.

TABLE B.

Magnet.	P	9	$\left(1-\frac{p}{r^{2}}-\frac{4}{r^{4}}\right.$	Change in H at Dehra Dún.
2 A	1196	-1,503	1 99922	$+5^{8} \gamma$
3 A	8.87	-851	+'99379	$+33 \gamma$
4A	10.02	-778	T 999266	$+30 \gamma$
${ }_{5} \mathrm{~A}$	942	- 711	$1 \cdot 99307$	$+27 \gamma$
6 A	8.48	- 193	T 999300	$+7 \gamma$
10	9.32	-1,126	T 999386	$+43 \gamma$

The values in the last column of the table agree closely with those obtained in previous years.
6. Programme for $1,008-09$. - It was intended to complete the preliminary survey during last field season, but owing to the reasons given in para. 1 of
this report this could not be accomplished. During the ensuing field season, therefore, two field detachments will work in Burma, chiefly along the coast, and it is confidently expected that the preliminary survey will be completed.

Two other detachments will be employed on the detail survey and will examine two of the most abnormal districts as yet discovered, viz., S. W. of Indore and near Pokaran in the Rajputana desert.

In the former district the evidence of abnormality is the value of H. F. obtained at stations No. 621 Bistan and No. 622 Khal Ghat (vide magnetic chart). These stations are about 35 miles apart and at the former the value of H. F. is $\cdot 378$ C. G. S. and at the latter 320 C . G. S. The declination at Bistan is practically normal, viz., $1^{\circ} 6^{\prime} \mathrm{E}$ but at Khal Ghat it is $2^{\circ} 36^{\prime} \mathrm{E}$. It is hoped that a definite centre of attraction will be located, but the whole district is composed of Deccan trap and many abnormal values are likely to be met with.

In the latter district the abnormality is mainly shown by the declination values at No. 20 Asolai, $0^{\circ} 15^{\prime} \mathrm{E}$, and No. $4^{1} 3$, Hardikot (near Pokaran) $3^{\circ} 4^{\prime}$ E. The values of H. F., viz., 34^{\prime} 'and 339 C. G. S. are both approximately normal, but, as the two stations are nearly on the same parallel, an assumed centre of attraction lying between them would not have much effect on this component, while it would cause a maximum divergence in the values of declination at the two stations.

The method of survey will be to take observations every 10 or 12 miles over the area and to continue these outwards until approximately normal values are obtained. Where extreme abnormality is found the observation will be repeated a short distance (half a mile to a mile) away.

It is difficult to estimate the time required for the examination of any district as this, of course, depends on the area involved, but it is expected that both the districts inentioned above will be completed and probably each detachment will be able to survey other small abnormal areas in Central India. The two Burma detachments will also carry out detail survey, on completion of the preliminary survey, i.e., for about the last two months of the field season.

The officer in charge and the second Imperial officer will visit all the base and repeat stations and will also take observations at several old field stations suitably situated.
7. Results included in this report.-A table showing the approximate preliminary values (uncorrected) at the field and repeat stations in 1907-08 is appended (see Tables p. 59) together with an index chart showing all stations of observation to date. The tabulations of the results obtained at Dehra Dún, Barrackpore, Toungoo and Kodaikánal observatories are published for 1907.

II. The Magnetic Observatories in 1907-08.

	A. Dehra Dún	erva	,	.	-	.	-	-	-	-	Page.
	B. Harracknere	,	.	-	-	.	-	-		.	${ }_{1}$
	C. Toungoo	"	.	-	.	.	-	.	-	-	14
	D. Kodaikánal	"	-	-	-	.	-	-	-	-	17

A.-Dehra Dün Observatory.

[^0]1. General remarks on working.-The observatory was in charge of Observer Shri Dhar up to July 1908, and up to the end of September Babu R. P. Ray performed the duties of magnetic observer until relieved by the observer from Toungoo.

The magnetographs continued to give good results throughout the year, and in spite of the heavy rains of 1908 there has been no trouble from water in the underground room.
2. Mean values of Constants.-The following table gives the monthly mean values of the magnetic collimation, of the distribution coefficients $P_{1,2}$ and $P_{2,3}$ and of the moment of the magnet (m_{0}) for 1907 .

The values of P and m actually used in computing H are also shown, these being obtained by careful scrutiny of the individual values.

Mean values of the constants of the Magnetometer No. 17.

Months 1907.	$\left\lvert\, \begin{gathered} \text { Declina- } \\ \text { Tlon } \end{gathered}\right.$	HORIZONTAL FORCE CONSTANTS.						
	Mean Mapnetic Collima. tion.	Mban Values of P's					Accepted Mean values of M_{0} C. G. S.	Remarks.
		$\mathrm{P}_{1}{ }^{-2}$	P_{23}	$\left.\begin{gathered} \text { Mcted } \\ \text { telue of } \end{gathered} \right\rvert\,$ $\mathbf{P}_{1,9}$	ted value of $P_{2.3}$.			
January	-8 24	740	8.14			914*60	91460	
February	$-8 \quad 23$	76r	8.06			914'60	91460	
March .	$\begin{array}{ll}-8 & 22\end{array}$	7'45	7"97			91460	914.60	
April ${ }^{\text {a }}$	-8 27	7×5	798			91411	91433	
May . .	-8 22	7'49	$7 \cdot 96$			913'97	91433	
June -	$\begin{array}{ll}-8 & 32\end{array}$	753	8.06	\%	B	$913 ' 73$	914'33	
July	-8 31	T34	8.14	旁	蕃	$\begin{aligned} & 91373 \\ & 914.40 \end{aligned}$	914:33	(1) to 17 th. (2) from $20 t h$.
August . . .	$\begin{array}{ll}-8 & 31\end{array}$	739	813	\pm	$\dot{\infty}$	914'40	91433	
September	-8 22	738	804			9144° $914: 6$	914.33	(1) to 14th. (2) from 16th.
October	$\begin{array}{lll}-8 & 28\end{array}$	T4i	789			$\begin{aligned} & 91 \cdot 67 \\ & 91 I^{\prime} 43 \end{aligned}$	911.84	(1) to 16 th (2) from $18(\mathrm{~h}$.
November	-8 37	738	7×82			911'32	91184	
December	$\begin{array}{ll}-8 & 35\end{array}$	774	7'87			$\begin{aligned} & 011.98 \\ & 911.87 \end{aligned}$	91184	(1) to 14 th. (2) froin 18th.

3. Mean values of base lines.-The table below shows the mean values of the H. F. and declination base lines actually used. These values are obtained in the same way as the values of P and m and are more probably correct than the actual monthly means. Changes, such as those in July and October 1907, occasionally occur without any apparent reason and with no sign of a sudden slip of the quartz fibre and in these cases it can only be assumed that the change is gradual and uniform. Values of the base lines for the periods marked a can therefore, only be found by interpolation.

The base line values of the V. F. magnetograph have not been shown as there have been frequent changes.

Dehra Dín Observatory.

Note.-a Base line value assumed to be varying uniformly. Values for individual days found by interpolation.
4. Mean scale value and temperature range.-The mean scale value of the H. F. magnetograph was $4^{\circ} 05 \gamma$ for a change of ordinate of $0^{\circ} 04^{\prime \prime}$ up to the 8th of June when, on the torsion head being turned, the value was altered to $4^{\circ} 14^{4}$ That of the V. F. instrument has frequently changed owing to the necessity of altering the balance of the magnet. The values have ranged from $4 \times 12 \gamma$ to 4"9r γ.

The mean temperature of the year was $26.3^{\circ} \mathrm{C}$ with maxima of $27.2^{\circ} \mathrm{C}$ in October, November and December and a minimum of $25.1^{\circ} \mathrm{C}$ in April. The base lines are referred to a temperature of $25^{\circ} \mathrm{C}$.
5. Mean value of secular change.-The following table gives the mean monthly values of the magnetic elements with the secular change for 1906-07 deduced therefrom.

Dehra Dún Observatory.

Secular change.

Months.	Horizontal Force $\cdot 33000+10-5$			Declination E. $\boldsymbol{z}^{\mathbf{o}}+$			$\underset{43^{\circ}+}{\mathbf{D I P}^{\text {P }}}$		
	Values 1906.	Values 1907.	Secular change, 1906-07.	Values 1906.	Values 1907.	Secular change, 1906-07.	Values 1906.	Values 1907.	Secular change, 1got-07.
	C. G. S.	C. G. S.	γ	,	,	,	,	,	,
January . .	376	336	-40	396	39.0	-0.6	29.0	34'1	+51
February .	371	333	-38	$39 \cdot 5$	38.7	-0.8	30.0	258	$+5^{6}$
March	376	322	-54	$39^{\prime 3}$	39.2	-0.1	28.9	337	$+48$
April .	382	335	-47	39.4	38.6	-0.8	28.6	339	+53
May .	365	330	-35	393	385	-0.8	298	353	$+55$
June - .	374	333	-41	392	38.0	-12	${ }_{2} 88$	35^{6}	+68
July - .	362	.322	-40	$38 \cdot 8$	$38 \cdot 1$	-0.7	3×7	36.4	+57
August . .	363	325	-38	39.1	379	-12	31.1	36.4	+53
September -	362	323	-39	39.1	378	$-1 \cdot 3$	$33^{3} 2$	37.1	+49
October . .	352	3 ¢о	-43	39.0	378	-12	314	380	+6.6
November	355	389	-46	388	37.5	-1.3	33.5	379	+4.4
December .	342	305	-37	388	375	-13	337	38.7	+5\%
Meins	365	324	-41	$39^{\prime 2}$	38.2	-ro	30.6	361	+5'5

Note.-(1) The values of H, F. have bein re-computed from the beginning of the survey with the mean mand the $\frac{m}{\mathbf{H}}$
obtained from deflections at 22.5 cms . The above secular change of H. F. is found from these values
(2) In 1906 the dip was observed with Dip Circle No. 44 and in 1907 with Inductor No. 30 . The difference between the two instruments is $0 \cdot 8$ ', the Inductor giving higher values. The values of dip in 1906 have thereforo been increased by this amount.

> B.-Barrackpore Observatory.

1. General remarks on working.
2. Mean values of H. F. and Declination constants.
3. Mean values of base lines.
4. Mean scale values and temperature range,
5. Mean monthly values of magnetic elements and secular change 1906-07.
6. General remarks on working.-The observatory remained in charge of K. N. Mukerji throughout the year. The magnetographs all worked satisfactorily, though the declination instrument gave a small amount of trouble owing to the base line value varying. This was opened up in December 1907 and a new base mirror fixed, since when the value has been fairly steady. In the last few months, also, there have been signs that the H. F. magnet mirror is perishing and this will be replaced during the ensuing field season. The new pattern V. F. magnet was mounted last field season and has worked satisfactorily.
7. Mean values of constants. - The following table gives the monthiy mean values of the magnetic collimation, the distribution co-efficients $P_{1,3}$ and $P_{2,3}$ and the magnetic moment of the magnet (m_{0}) for 1907 . The values of P and m actually used in the computation of H are also given.

It will be seen that the value of m has but very slightly changed which is satisfactery.

Mean values of the constants of the Magnetometer No. 20.

Months 1907.	$\left\|\begin{array}{c}\text { Declina- } \\ \text { tion Con- } \\ \text { stant. }\end{array}\right\|$	HORIZONTAL FORCE CONSTANTS.						Rbuares.
	$\begin{gathered} \text { Mean } \\ \text { Magnetic } \\ \text { Collima- } \\ \text { tion. } \end{gathered}$	Mban values of P's.				$\begin{gathered} \text { Mean } \\ \text { values } \\ \text { of } \\ \text { m. } \mathbf{m}_{n} . S . \end{gathered}$	Accepted meanvalues of C. ${ }^{\mathrm{G}} \mathrm{m}_{\mathrm{o}} \mathrm{S}$.	
		$\mathrm{P}_{1.2}$.	$\mathrm{P}_{3.1}$.	$\left\|\begin{array}{c} \text { Accep- } \\ \text { ted } \\ \text { value of } \\ \mathbf{P}_{1,2}, \end{array}\right\|$				
	- "							
January	-7 3	6.68	7.84			949	94909	
February	$\rightarrow 7$	6.75	$7 \cdot 68$			949'19	$949 \cdot 19$	
March	$-7 \quad 6$	6.88	775			$949 \cdot 12$	94912	
April	-7 7	6.78	791			$949 \cdot 17$	949 '17	
May - .	-76	6.73	$7 \cdot 82$			949.05	949\%\%	
June -	$\cdot-717$	6.74	795	$\begin{aligned} & \text { 感 } \\ & \text { den } \end{aligned}$		$949 \% 6$	$949^{\circ} \mathrm{O}$	
July	$\cdot-716$	681	791	-	-	94914	94901	
August	$\cdot \left\lvert\, \begin{array}{ll}-7 & 15\end{array}\right.$	6.79	7^{782}			94888	$949^{\circ} \mathrm{O}$	
September	$\cdot \left\lvert\, \begin{array}{ll}-7 & 16\end{array}\right.$	681	$7 \cdot 84$			94892	949'0:	
October	-7 13	6.77	$7 \cdot 82$			949.03	$949 \% 1$	
November	$\rightarrow 7$	6.94	790			$948 \% 2$	949% or	
December	$\because-7 \quad 16$	6.91	8.07			949.08	949.01	

3. Mean values of the base lines.-The table below gives the values of the H. F. and declination base lines. The V. F. base line has constantly changed and is not shown.

Months 1907.

Barrackpore Observatory—contd.

Nots. $-a=$ Base line value assumed to be varying uniformly, Values for individual days found by Interpolation.
4. Mcan scale values and temperature range.-The mean scale value of the H. F. magnetograph was $4^{\prime} 82 \gamma$ for a change of ordinate of $0^{\circ} 04^{\prime \prime}$ wihh limiting values of $4: 80$ and $4: 86$. That of the V. F. instrument was $5 \% 71 \gamma$ for April and May 1907 and 577γ up to December 1907 when the new magnet was mounted the limiting values being $5^{\circ} 76$ and $5^{\circ} 79$.

The mean temperature of the year was $31.9^{\circ} \mathrm{C}$ with a maximum of $33.0^{\circ} \mathrm{C}$ in June and a minimum of $30.8^{\circ} \mathrm{C}$ in January. The base lines are referred to a temperature of $31^{\circ} \mathrm{C}$,
5. Mean monthly values of secular change.-The follo wing table gives the mean monthly values of the magnetic elements in 1906 and 1907 and the secular change deduced therefrom.

Barrackpore Observatory.
Secular change.

Months.	Horizontal Force.$37000+10-5$			Drclination EI° t			$\begin{gathered} \text { D1P } \\ 30^{\circ}+ \end{gathered}$		
	Values 1906.	Values 1907.	Secular change $1906-07 .$	Values 1906.	Values J907.	Secular change 1906-07.	$\begin{aligned} & \text { Values } \\ & 1906 . \end{aligned}$	Values 1907.	Secular change $1906-07$
	C. G. S.	C. G. S.	y	,	,	,	,	,	,
January - .	246	281	+35	15.5	120	-3.5	$23^{\prime \prime} 9$	27.6	437
February .	246	280	+34	15.5	I1'0	-4'5	$23^{\circ} 0$	$30^{\prime} 5$	+75
March	257	281	+24	15.3	11-2	$-4^{\prime 1}$	24.8	280	+3'2
April	266	297	+31	14%	10.6	-4.3	24.5	287	$+4^{\prime 2}$
May	365	289	$+24$	14.3	103	-4%	23'1	$20 \cdot 8$	$+6.7$
June - .	255	290	+35	143	9.8	-4.5	$24^{\circ} 0$	29.8	$+5^{\prime 8}$
July	260	283	$+23$	$14^{\prime 2}$	97	-4.5	247	$30 \cdot 6$	+59
August . .	261	293	$+32$	13'9	9'4	-4.5	25.6	$30^{\prime} 8$	+5'2
September	260	293	+33	13^{9}	9%	$-4^{\prime 8}$	$25^{\prime} 3$	$3 \mathrm{I}^{\prime \prime}$	+57
October	266	284	$+18$	130	8.6	$-4 * 4$	265	$31 \cdot 8$	$+5.3$
November	65	290	+25	127	8.4	-4.3	$25^{\prime} 7$	31.8	+6'1
December	$26 t$	290	+29	$13 ' 2$	79	-43	26.8	32.1	+53
Means	259	298	$+29$	141	9.8	-43	$24^{\circ} 8$	$30^{\prime 2}$	$\div 5.4$

Nore.-(1) The values of H have been re-computed from the beginning of the survey with the mean mand the $\frac{m}{H}$ obtained from deflections at $22^{\prime} 5 \mathrm{cms}$. The above secular change of H. F. is found from these values.
(2) During 1906 the dips were observed with the Dip cirele No. 45 and in 1907 with the Inductor No. 46 . The difference of the two instruments is $1 " 6$, the inductor giving lower values. The values of Dip with the circle are therefore diminished by this amount.

C.-Toungoo Observatory.

1. General remarks on working.
2. Mean values of H. F. and Declination constants.
3. Mean values of base lines.
4. Mean scale values and temperature range.
5. Mean monthly values of magnetic elements and secular chage 1906-07.
6. General remarks on working. -The observatory remained in charge of Surveyor K. K. Dutta until May 1908 when he proceeded on 3 months' leave. Recorder Abdul Majid held charge up to the end of the survey year. K. K. Dutta was in bad health during the autumn of 1907 and was only able to observe occasionally, and the values of P and m from August to October are obtained from very few observations. The magnetographs worked well throughout the year.
7. Mean values of $\boldsymbol{H} . \boldsymbol{F}$. and declination constants.-The following table gives the monthly mean values of the magnetic collimation, the distribution coefficients $P_{.1-y}$ and $P_{.9-a}$ and the magnetic moment of the magnet (m_{0}) for 1907. The values of P and m actually used in computing H are also shown.

A new magnet No. 5 B was used from September 1907 which explain: the changes in the constants. The change in collimation between October and November is due to the magnet having been turnerl in its sheath.

Mean values of the constants of the Magnetometer No. 19.

3. Mean values of base lines.-The table below shows the values of the declination and H. F. base lines. Those for the V. F. magnetograph are not given as they have frequently changed.

Toungoo Observatory.

Notr.-a= Base line value assumed to be varying uniformly. Values for individual days found by interpolation.
4. Mean scale values and temperature range.-The scale value of the H. F. magnetograph appears to have slightly changed during the year. Starting at 560γ in January the value fell to $5 \cdot 48 \gamma$ when the torsion head was turned at the end of that month (vide change in H. F. base line). From September the value rose again to $5^{\circ} 51 \gamma$ and appears now to be steady. The scale value of the V. F. instrument has also changed during the year being 5.65γ for April and May, 539γ from June to August, and 549γ for the rest of the year.

The mean temperature of the year was $89^{\circ} 0^{\circ} \mathrm{F}$. with maxima of $89^{\prime} 2^{\circ} \mathrm{F}$. in February and April and a mirimum of $88.8^{\circ} \mathrm{F}$. in April which is extremely satisfactory. The base lines are referred to a temperature of $89^{\circ} \mathrm{F}$.
5. Mean values of secular change.-The following table gives the mean monthly values of the magnetic elements with the secular change deduced therefrom. The values in H. F. for the last 4 months in the year are unusually high but the mean secular change for the year agrees well with the value $+4 \mathrm{I} \gamma$ found for $1905-06$.

Toungoo Observatory.

Secular change.

Months.	Horizontal force. $38000+105$.			Declination.$\mathrm{EO}^{\circ}+$			$\underset{\substack{\text { Dip } \\ 22^{\circ}+}}{ }$		
	$\begin{gathered} \text { Values } \\ \text { 1906. } \end{gathered}$	$\begin{aligned} & \text { Values } \\ & 19^{\circ} 7 . \end{aligned}$	Secular change 1906-07.	$\begin{gathered} \text { Values } \\ \text { I } 06 . \end{gathered}$	$\begin{gathered} \text { Values } \\ \text { alpo } \end{gathered}$	Secular change 1906-07.	Values 1 yo6.	$\begin{aligned} & \text { va }^{1} \text { ves } \\ & 1.7 . \end{aligned}$	Secular change 1906-07.
	c. G. S.	c. G. s.	γ	,	,	,	,	,	,
January	702	718	$+16$	45^{2}	$41 \cdot 5$	-3.7	59.3	59.4	-0.4
February	703	709	+6	$45^{\circ} 4$	$41^{\circ} \mathrm{O}$	-4.4	60.9	$62 \cdot 5$	+16
March	710	732	+22	$45^{\prime \prime}$	$40^{\circ} 4$	-47	$59^{\prime 8}$	61.1	+13
April	715	748	+33	$44 \cdot 4$	400	-4.4	$60 \cdot 0$	61.5	+15
May	710	740	+30	44.4	39.4	-50	$60 \cdot 2$	62.1	+199
June	724	752	+28	$43 \cdot 9$	$39 \cdot 3$	-4.5	60.2	$61 \cdot 2$	$+10$
July	730	$7+6$	$+16$	43.5	$3^{8.8}$	-47	59.9	61.8	+19
August	722	761	+39	$43 \cdot 1$	38.9	-4.2	60.5	$62^{\circ} \mathrm{O}$	+1.5
September	720	771	+51	427	$38 \cdot 3$	-4.4	60.2	61.5	+13
October	715	782	$+67$	$42 \cdot 2$	38.1	-4.1	$60 \cdot 4$	$61 \cdot 2$	+0.3
November	721	792	+71	41.8	379	-3.9	60.2	62.0	+1.8
December	709	802	$+93$	41.6	$37^{\circ} 4$	-4.2	60.1	61.8	+1'7
Means	- 715	754	+39	43.6	393	-4*3	$60 \cdot 3$	$61 \cdot 5$	$+1 \cdot 3$

Note.-il) The values of H. F. have been re-computed from the beginning of the survey with the mean mand the H_{H} obtained from defections at 22.5 cms . The above secular change of \mathbf{H}. \mathbf{F}. is found from these values.
Nore.- (2) Up till the end of January 1907 the dip was observed with the Dip Circle No. 137 and from February with the Inductor No. 44 ; oxcasionally the Dip Circle was used after Pebruary also. The diference of the two instruments is 1%, the inductor giving higher dips. The values of dip with the circle are therefore increased by this amourt

D.-Kodaikánal Observatory.

1. General remarks on working.
2. Mean values of H. F. and declination constants.
3. Mean values of base lines.
4. Mean scale value and temperature range.
5. Mean monthly values of magnetic elements and secular change $1906 \cdot 07$.
6. General remarks on working.-The observatory remained in charge of Surveyor Ramaswami Iyengar throughout the year, except for a period of 3 months while he was on leave, during which time Shri Dlar held charge.

Thanks are due to the Director, Solar Physics Observatory, for his cordial assistance in all matters pertaining to the magnetic work.

The H. F. and Declination magnetographs have given good results throughout the year but the V. F. instrument was unsatisfactory even after the mounting of the new magnet. In June 1908, however, the magnet was made more slable by screwing down the small gravity bob and for the remainder of the year the traces have been excellent. The scale value is now necessarily somewhat high, but this cannot be avoided.
2. Mean values of constants.-The following table gives the monthly mean values of the magnetic collimation, the distribution coefficients P_{r}, and $P_{2,3}$ and the magnetic moment of the magnet (m_{0}) for 1907. The values of P and m actually used in computing H are also shown.

Mean values of the constants of mannetometer Na. ı6.

3. Mean values of the base lines.-The following table shows the base line values of the $\mathrm{H} . \mathrm{F}$. and declination magnetographs. It will be noticed that the H. F. base line has been practically steady throughout the year, only a slight and fairly regular fall being observed. The base line values of the V. F. magnsiograph have not been shown as they have constantly changed.

Kodaikanal Observatory.

4. Mean scale value and temperature range.-The mean srale value of the H. F. maynetograph was 6.14γ for a change of ordinate of $0.04^{\prime \prime}$ with limiting values of 613 and 6.16. That of the V.F. instrument varied considerably between 3 and 4γ up to the end of September 1907, when the magnet was removed and cleaned and the scale value raised to $6.0_{3} \gamma$ after which it remained fairly steady till December when the new magnet was mounted.

The mean temperature of the year was $191{ }^{\circ} \mathrm{C}$ with a maximum of $193^{\circ} \mathrm{C}$ in May and minima of $190^{\circ} \mathrm{C}$ in January and December. The base lines are referred to a temperature of $19^{\circ} 0^{\circ} \mathrm{C}$.
5. Mean monthly values of secular cha"ge.-The following table gives the mean monthly values of the magnetic elements in 1906 and 1907 and the secular change deduced therefrom.

Kodaikánal Observatory.
Secular change.

Months.

Kodaikánal Observatory—contd.

Months:	Horizontal force. $37000+10^{6}$.			Declination. $\mathrm{WO}^{\circ}+$			$\begin{aligned} & \text { Dip. } \\ & 3^{\circ}+ \end{aligned}$		
	Values 1906.	Values 1907.	Sccular change 1906-07.	Values 1906.	Values 1907.	Secular change t906-07.	Values 1906.	Values 1907.	Secular change 1906-07.
	C. G. S.	C. G. S.	γ	,	,	,	,	,	,
May	420	429	$+9$	35'9	$40^{\prime 2}$	+4'3	21.8	26.3	+4.5
June	419	430	+11	$36 \cdot 3$	40'5	$+4.2$	21.5	27%	$+6.2$
July .	420	423	+3	$36 \cdot 7$	407	+40	22.5	27.9	+5'4
August	422	430	+8	$36 \cdot 7$	41.1	+4'4	22.4	$28 \cdot 3$	+5'9
September	428	438	$+10$	371	$41^{\prime} 7$	+4.6	22.4	$27 \cdot 4$	$+5 \%$
October	42 I	436	+15	$37 * 4$	$4 \mathrm{I} \cdot 8$	$+4.4$	23°	27.7	$+47$
November	43^{2}	437	+5	$38 \cdot 0$	42.4	$+4.4$	25.2	294	+4'2
December .	427	440	+13	$38 \cdot 2$	42.8	$+4^{6}$	26.5	29.7	$+3.2$
Means	425	431	+6	$36 \cdot 3$	$40^{\prime} 7$	+4.4	21.8	27.4	$+5 \cdot 6$

Nore-(1) The values of H. F. have been re-computed from the beginning of the survey with the mean mand the $\frac{\mathrm{m}}{\mathrm{H}}$ obtained from defections at $22 \cdot 5$ Cms. The above secular change of H . F. is found from these values.
(2) Up till the end of February 1907 the dips were observed with the Dip Circle No. 46 and from Marchlwith the Inductor No. 45 ; occasionally the Dip Circle was used after March also. The difference of the two in-truments is $0 \cdot 7^{\prime}$ the inductor giving higher dips. The values of dips with the circle have therefore been increased by this amount.

Tables of Results.

INDEX TO TARLES.

A.-Mean values of magnetic elements at Dehra Dún, Barrackpore, Toungoo and Kodaikárıal													
B.--Classification of curves and dates of magnetic disturbances at observatories in 1907													
C.*-	of res	Dehra Dún											22
D.*-	Ditto	Barrackpore											31
E. ${ }^{*}$	Ditto	Toungoo											40
F.*-	Ditto	Kodaikánal											49
G.t-Abstract of observations at field and repeat stations in r907.08 59													
H.-Index chart showing position of observatories and stations of observation to date													

[^1]
Table A.

The Magnetic Elements at the Observatories in 1907.

Observatory.	Latitude.	Longitude.	Declination.	Horizontal Force.	Vertical Force.	Dip.
	- ,	- . 1	- ,			- ,
Dehra Dún	301919 N	$\begin{array}{ll}78 & 319 \mathrm{E}\end{array}$	238.2 E	-33324 C. G. S.	31736 C. G. S.	43 36.1 N
Barrack pore	224629 "	882139	19.8	'37288	こrg67	30302
Toungoo	185545 "	$96263 \ldots$	- 39 3 "	-38754 \quad	16470	23 1'5
KodaikÁnal .	101350 ,	772746	$040 \% \mathrm{~W}$	'37431 \quad '	-0226ı	S 27.4,

NO. 26 party (MaGNETIC).

NO. 26 PARTY (MAGNETIC).
Observations of Dip Dehra Dün Inductor No. 30 by Schulse.

Observations of Dip Dehra Dún Inductor No. 30 by. Schulse.

Hourly Means of the Declination as determined at Dehra Dún from the selected quiet days in 1907.

Houra	Mid.	!	2	3	4	5	6	7	8	9	10	1	Noon.	13	14	15	${ }^{6}$	17	18	19	20	21	22	23	Mid.	Means.
Declination $\mathrm{E} 2{ }^{+}+\quad$ Winter.																										
Months.															,	,	?	,	,	,	,	,	,	,		,
January	38.9	$38 \cdot 9$	38.9	38.8	$38 \cdot 7$	$38 \cdot 8$	$38 \cdot 6$	38.7	397	406	$40 \cdot 4$	$3^{8 \cdot 3}$	37.7	379	38.4	39°	393	394	39°	39°	39^{1}	39°	390	39°	$39^{\prime 1}$	$39^{\circ} 0$
February	$3^{89} 9$	$3^{8.9}$	38'9	3899	$3^{8 \cdot 8}$	$38 \cdot 6$	$3^{88} 4$	$3^{8 \cdot+}$	39'5	$40^{\circ} 4$	40^{4}	393	37.6	36.9	37°	$37 \cdot 5$	38:2	386	$3^{8.6}$	38.7	$3^{8.8}$	38.8	39°	39°	39°	38.7
March	391	39^{2}	39°	39°	38.9	38.7	$38 \cdot 9$	39.8	$41^{\circ} 4$	$42^{\prime} 5$	42'3	$40 \cdot 3$	38.7	373	36.9	37^{6}	${ }_{3}^{8.6}$	389	38.7	386	38.8	38.9	38.9	39°	39.1	$39 \cdot 2$
October	379	37'9	37.8	377	378	377	$3^{8.1}$	$39^{\prime 2}$	402	$40^{\prime} \mathrm{t}$	394	37'9	36.0	354	$35^{\circ} 7$	370	377	$37 * 5$	373	37.4	375	376	37.8	380	380	$37 \cdot 8$
November	376	37.6	376	37'5	37'5	$37 \cdot 5$	375	37%	$38 \cdot 0$	$38 \cdot 3$	38.	371	36.7	36.9	$37 \cdot 3$	$37 \cdot 5$	37.4	373	374	374	37'3	373	374	375	37.5	37.5
December	37.6	376	$37^{\circ} 6$	$37 \% 5$	37^{2}	37°	36.8	367	371	379	38.5	38.0	37 '5	$37 \cdot 3$	374	$37^{\prime 2}$	373	375	37.6	37.5	376	37.5	$37 \cdot 5$	377	$37^{\circ} 7$	$37 * 5$
Means	$38 \cdot 3$	38.4	$38 \cdot 3$	38.2	$3^{8 / 2}$	38.1	$3^{8.1}$	38.4	393	$40^{\circ} 0$	39.8	38.7	374	370	37^{11}	376	$3^{8.1}$	$3^{8.2}$	38.1	$3^{3 \cdot 1}$	38.2	38.2	$38 \cdot 3$	$3^{8.4}$	38.4	$38 \cdot 3$

Diurnal Inequality of the Declination at Dehra Dun as deduced from the preceding Table.

Hours	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	و	20	21	22	23	Mid.
Winter.																									
Months.	,	,	,	,	,	,	,	,		,		,	,	,	,	,	,	,	,	,	,	,	,	,	,
January	-0.1	-0.1	-0'1	-0.2	-0'3	-0.2	-0.4	-0.3	+0.7	+16	+14	-0.2	-13	-1.1	-0.6	0	+0.3	+0.4	\bigcirc	0	+0.1	0	0	\bigcirc	+0.1
February	+0.2	$+0.2$	+0'2	+0.2	+0.1	-0.1	-0.3	-0.3	+0.8	$+17$	+17	+0.6	-1.	-1.8	-177	-1:2	-0	-0'1	-0.1	0	+0.1	+0.1	+0.3	$+0_{3}$	+0.3
March	-0.1	0	0	-0^{2}	-0.3	-0.5	-0.3	+0.6	+2.2	+3.3	+3'1	+1.6	-0.5	-1'9	-2.3	-1.6	-0.6	-0.3	-0.5	-0.6	-0.4	-0.3	-0.3	-0.2	-0.1
October	+0.t	+0.1	-	-0.1	-	-0.1	+0.3	$+1 \cdot 4$	+2.4	$+2 \cdot 3$	$+1.6$	+o. 1	-1.8	-24	-21	-0.8	-0. 1	$\rightarrow 3$	-0.5	-0.4	-0.3	-0.2	0	+0.2	+0.2
November	+0.1	+0.1	+0.1	-	0	\bigcirc	0	0	+0.5	+0.8	+0.5	-0.4	-0.8	-0.6	-0.2	0	$\cdots .1$	-0.2	-0.1	-0.1	-0.2	$\longrightarrow .2$	$\rightarrow 0.1$	-	-
December	+0.1	+0.1	+0't	\bigcirc	-0.3	-0.5	-0.7	-0.8	-0.4	+0'4	+ro	+0.5	o	-0.2	-0.1	-0.3	-0.2	\bigcirc	+0.1	\bigcirc	+0.1	0	0	+0.2	+0.2
Means	0	+0'1	\bigcirc	-0. 1	-0.1	-0.2	-c. 2	+0'1	+10	+ 17	+1'5	$+0.4$	-0.9	-1.3	-1.2	-0.7	-0.2	-0.i	-0.2	-0.2	-0.1	-0. 1	0	+0.1	+0.1

\footnotetext{
Summer.

NO． 26 PARTY（MAGNETIC）．
Hourly Means of Horizontal Force in C．G．S．Units（corrected for temperature at Dehra Dún from the stlected quiet days in 1907.

Hours	Mid．	！		3	4	5	6	7	8	9	10	11	Noon．	13	14	15	16	17	19	19	20	21	22	23	Mid．	eans．
${ }^{3} 3000+$ Winter．																										
Months．	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	7	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	${ }^{\boldsymbol{\gamma}}$	γ	7	γ	$\boldsymbol{\gamma}$	γ	\boldsymbol{r}						
January	334	333	332	333	334	334	335	337	340	341	337	338	$3+3$	343	344	$3+1$	343	337	335	332	329	329	330	331	333	336
Pebrusry	330	33°	331	329	328	330	333	334	336	337	33^{8}	3.39	343	344	340	336	332	329	327	329	328	327	328	329	332	333
March	313	317	316	317	318	320	321	321	322	327	33°	331	33°	330	33°	326	319	320	322	322	322	320	321	321	322	322
October	306	306	308	${ }^{3} 8$	$3 \cdot 7$	303	308	305	302	298	303	313	323	324	320	315	313	312	310	311	309	309	311	310	310	310
Novernber	306	304	$3 \cdot 5$	305	304	30.4	307	309	312	314	316	3：2	325	321	313	306	306	306	307	307	305	306	307	309	3 OS	309
December	2，8	299	258	． 298	300	301	$3{ }^{\circ} 3$	307	314	320	32：	319	$3{ }^{3} 3$	309	306	304	301	301	301	300	299	300	301	301	305	305
Means	315	375	315	315	315	316	318	319	321	$3 / 3$	32.4	327	330	329	326	321	319	318	317	317	315	315	3.6	317	318	319

	$\stackrel{\infty}{\sim}$
	$\stackrel{\text { ले }}{0}$
	$\stackrel{0}{0}$
ल ल్లे	¢
毎	¢
¢	告
¢ิ－	－
¢్లు	\pm
が只	ल
ल	$\stackrel{\sim}{n}$
志 ${ }_{\text {¢ }}^{0}$ 志	$\stackrel{\infty}{0}$
噐	$\stackrel{17}{9}$
呙	尔
	$\stackrel{\square}{0}$
	$\stackrel{\infty}{\sim}$
	品
	N
示	$\stackrel{0}{9}$
	N
	$\stackrel{\text { m }}{ }$
	ल
－\times ¢	N／
フ	$\stackrel{\rightharpoonup}{\text { a }}$
	$\vec{\sim}$
ざल	N／0
	$\stackrel{\sim}{\sim}$
	$\stackrel{\text { ¢ }}{\text { ¢ }}$

Diurnal Inequalify of the Horizontal Force at Dehra Din as d:duced from the preceding Table.

Hours.	Mid.	:	2	3	4	5	6	7	8	9	10	11	Noon.	${ }^{13}$	14	15	16	${ }^{17}$	${ }^{18}$	19	20	${ }^{21}$	22	23	Mid.
Winter.																									
Months.	7	γ	γ	7	γ	γ	γ	γ		γ	γ	$\boldsymbol{\gamma}$	γ	7	γ	${ }^{7}$	r	γ	γ	γ	7	γ	7	γ	7
January	-2	-3	-4	-3	-2	-2	-1	+	+4	+5	+1	+2	+7	+7	+8	+5	+7	+1	-1	-4	-7	-7	-6	-5	-3
February	-3	-3	-2	-4	-5	-3	-0	+1	+3	+4	+5	+6	+10	+ II	+7	+3	-1	-4	-6	-4	-5	-6	-5	-4	-1
Marct.	-4	-5	-6	-5	-+	-2	-:	-1	-	+ 5	+8	+9	+8	+8	+8	+4	-3	-2	-	0	\bigcirc	-2	-1	-1	0
October	-4	-4	~ 2	-2	-3	-2	-2	-5	-8	-12	-7	+ 3	+13	+14	+10	+5	+3	+2	0	+1	-1	-1	+1	-	-
November	-3	-5	-4	-+	-5	-5	-2	0		+5	+7	+13	+ 16	+12	+4	-3	-3	-3	-2	-2	-4	-3	-2	0	-1
December	-7	-6	-7	-7	-5	-4	-2	+2		+15	+16	+14	+8	+4	+	-1	-4	-4	-4	-5	-6	-5	-4	-4	\bigcirc
$\overline{\text { Means }}$	-+	-4	-4	-4	-4	-3	-1	-	+2	+4	+5	+8	+ II	+10	+7	+2	。	-1	-2	-2	--	-4	-3	-2	-1
Summer.																									
April	-8	-11	-10	-11	$\rightarrow 9$	-8	-9	-12	-11	-	+12	+24	+32	+30	+21	+9	+2	-6	-8	-8	-9	-7	-4	-3	-2
May	-1	-7	-6	-7	-7	-5	-5	-7	-11	-5	+7	+19	+22	+19	+15	+ 8	+1	-6	-7	-5	--4	-3	-3	-4	-3
June	-2	-6	-8	-7	-+	-4	-2	-3	-6	-7	-2	+5	+14	+15	+16	+11	+3	-2	-5	-6	-2	-2	$+2$	-	-
July .	-5	-4	-8	$\rightarrow 7$	\rightarrow	-5	-t	-5	-6	-6	-3	+1	+10	+ 12	+12	+9	+8	+5	+1	-	-1	+1	+2	0	-1
August	-2	-s	-6	-0	-7	-7	-4	-8	-8	-5	+	+9	+16	+19	+18	+12	+6	-	-4	-5	-6	-5	-3	-4	-3
September	-+	-6	-7	-6	-5	-4	-4	-8	-13	-13	-5	+4	+13	+17	+17	+12	+5	+r	+1	-	0	0	-1	-1	+1
Means	-5	-6	-7	-7	-	-5;	-5	-7	-9	-6	+2	+10	+18	+19	+17	+10	+4	-1	-4	-4	-4	-3	-1	-2	-1_{1}

No. 26 Party (magnetic).

Hours.	Mid.	,	;	3	4	5	\bigcirc	7	${ }^{8}$	9	${ }^{10}$	13	Noon.	${ }^{3}$	${ }^{14}$	15	16	17	${ }^{18}$	19	${ }^{20}$	${ }^{21}$	${ }^{2}$	${ }_{23}$	Mid. ${ }^{\text {M }}$	Means.
31000 C. G. S. $+\quad$ Winter.																										
Months.	7	γ	7	γ	y	γ	γ	γ	γ	γ	γ	7	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	\boldsymbol{r}	γ						
January	\ldots	\ldots	\cdots
February
March
October	761	761	761	761	761	761	763	765	${ }^{764}$	758	751	743	742	747	753	758	76	760	759	760	762	762	763	762	[;63]	758
Novenber	757	757	757	757	757	75^{88}	758	757	759	755	750	746	747	749		750	753	755	756	756	756	756	757	757	[756]	755
December	767	768	767	767	767	767	767	766	768	768	761	760	759	360	759	760	263	767	766	767	767	767	768	767	[;68]	765
Means	\cdots
Summer.																										
April .	714	714	75	725	715	75	718	79	713	703	695	689	690	693	696	201	703	704	704	1704	726	707	708	708	[708]	706
May .	729	729	730	730	729	731	732	731	726	717	713	714	715	717	720	725	727	728	726 !	727	728	728	728	729	[729]	725
June .	741	741	740	740	741	744	746	744	73^{8}	728	721	717	717	720	$72+$	\%29	735	73^{8}	739 !	: 739	739	739	741	739	[740]	735
July	745	745	745	745	744	746	749	746	742	737	729	723	724	726	729	732	737	739	741	740	74	742	743	$7+3$	[773]	739
August	746	746	745	745	346	748	750	748	744	736	732	729	730	733	735	738	74	744	745	74	7+5	747	$7{ }^{8}$	748	[748]	742
Septermer .	757	757	757	758	758	758	761	765	757	748	738	$73+$	735	739	743	750	753	75+	752	753	755	757	75^{8}	760	[76r]	1 752
Means	739	739	739	739	739	74°	743	742	737	728	721	718	719	721	725	729	733	735	735 !	\| 735	736	737	${ }_{73}$	33^{8}	[738]	373

Diurnal Inequality of the Vertical Force at Dehra Din as deduced from the preceding Tabie.

Hours.	Mis.	'	2	${ }^{3}$	4	5	6	7	8	9	10	11	Noon.	${ }^{13}$	14	15	${ }^{16}$		18	19	20	${ }^{1}$	22	${ }^{2}$	Mid.
Winter.																									
Months.	$\boldsymbol{\gamma}$	γ	γ	7	γ	γ	$\boldsymbol{\gamma}$	γ	${ }^{\text {y }}$	γ	y	${ }^{\gamma}$	${ }^{7}$	γ	γ	7	7	γ							
January	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots	...	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	...	\cdots	...
Febraary	\cdots	\cdots	\cdots	...	\cdots	...	\cdots	\cdots	\cdots	\cdots	\ldots	...	\cdots	.	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	...
March	\cdots	\cdots	\cdots	\cdots	...	\cdots	...	\cdots	\cdots	\cdots	...	-..	\cdots	\cdots	\ldots	\ldots
October	+3	+3	+3	+3	+3	+3	+5	+7	+6	0	-7	-15	-16	-11	-5	0	+3	+2	± 1	+2	+4	+4	+5	+4	$[+5]$
November	+2	+2	+2	+2	+2	+ 3	+3	+2	+4	0	-5	\rightarrow	-8	-6	-4	-5	-2	c	+1	+	+1	+	+2	+2	$[+\mathrm{I}]$
Decembeg	+2	+3	+2	+2	+2	+2	+2	+1	+3	+3	-1	-5	-6	-5	-6	-5	-2	+2	+1	$+2$	+	+2	+3	+2	$\underline{[+2]}$
Means	\cdots
Summer.																									
April .	+8	+8	+9	+9	+ 0	+9	+12	+13	+7	-3	-11	- 17	-16	-13	-10	-5	-3	-2	-2	-2	-	+	+2	+2	[+2]
May .	+4	+4	+5	+5	++	+6	+7	+6	+1	-8	-12	-11	-10	-8	-5	-	+2	$+3$	+1	+2	+3	+3	+3		$[+4]$
June .	+6	+6	+5	+5	+6	+9	+ 11	+9	+3	-7	-14	-18	-18	-15	-It	-6	-	+3	+4	+4	+4	+4	+6	+4	[+5]
July .	+6	+6	+6	+6	+5	+7	+ 10	+7	+ 3	-2	-10	-16	-15	-13	-10	-7	-2	0	+2	+1	+2	+ 3	+4	+4	[+4]
August	+4	+4	+3	+ +	+	+6	+ 8	+6	+2	-6	-10	-13	-12	-9	-7	-4	-1	+2	+3	+2	+3	+5	+6	+8	[+6]
Septemter .	+5	$+5$	+5	+6	+6	+6	$+9$	$+9$	+5	-4	-14	-18	$-1 /$	-13	-9	-2	+	+2	-	$+\mathrm{t}$	+3	± 5	+6	+5	[+9]
Means	+6	+6	+6	+6	+6	+7	+ 10	+9	$\stackrel{+}{4}$	-5	-12	-15	-14	-12	-8	-4	-	+2	+2	+2	+3	+4	+5		$[\div 5]$

Hourly Means of the Dip as determined at Dehra Dün from the selected quiet days in 1907.

Hours	Mid.	1	2	3	4	5	6	7	8	9	. 10	1	Noon.	5	14	15	16	17		19	20	21	23	${ }^{2}$	Mid.	Means.
Dip $43^{\circ}+\quad$ Winter.																										
Months.	,	,			,	,	,	,	,	,				,	,	,					,		,	,		,
January	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots'	...	\cdots	\cdots	\cdots'
February	.		\cdots	\cdots	\ldots	\cdots	\cdots	...	\cdots	\ldots	\cdots	...
Marcin	.	\ldots	\ldots	...	\ldots	...	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	'••	\cdots	\cdots	...
October	884	384	$3{ }^{89}$	$38 \cdot 3$	253	$38 \cdot 3$	34.4	38.7	38.8	38.6	$3^{8 \circ}$	371	36.5	$36 \cdot 7$	$37 \cdot 2$	378	$38 \cdot$	38.0	$38 \cdot 1$	$3^{8 \cdot 1}$	38.3	$3^{8 \cdot 3}$	38.2	3^{88}	38.3	38.0
November	$3^{8.2}$	383	38.2	$3^{8.2}$	$38 \cdot 3$	$3^{8 \cdot 3}$	$38 \cdot 2$	$38 \cdot$	$3^{8.0}$	376	$37 \cdot 3$	$36 \cdot 8$	366	37°	$37 \cdot 5$	$37 \cdot 8$	580	3^{81}	$38 \cdot 1$	$3^{8.1}$	${ }^{8} 8$	$36 \cdot 2$	38.1	38.0	38.0	379
December	391	$39^{\prime \prime}$	391	39°	$39^{\circ 1}$	39°	38.9	38.6	383	380	$37 \cdot 8$	377	380	$3^{8 \cdot 2}$	38.3	$3^{8 \%} 4$	387	39°	$38 \cdot 9$	39^{1}	$39^{\prime \prime}$	39.1	39°	39°	38.8	38.7
Means	\ldots	...	\ldots	\ldots	\ldots	..'	...	\ldots	\ldots	\cdots	\cdots		\ldots	\ldots

Diurnal lnequality of the Dip at Dehra Dín as deduced from the preceding Table.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon .	13	14	15	16	17	18	19	20	21	22	23	Mij.
Winter.																									
Months.	$\boldsymbol{\gamma}$	7	7	7	7	$\boldsymbol{\gamma}$	\boldsymbol{r}	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	\boldsymbol{r}	7	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	\boldsymbol{y}	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7	$\boldsymbol{7}$	$\boldsymbol{\gamma}$	
January	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots	...
February	...	\cdots	...	\cdots	\ldots	\cdots	\ldots	...	\ldots	\ldots	...	\cdots	\ldots	.-	-	\cdots	\cdots	\cdots	...	\cdots	\cdot	\ldots	\cdots
March		\ldots	..'	\cdots	...	\ldots	\ldots	...	\cdots	...	\ldots	...	\cdots	\cdots
October	$+{ }_{+}+$	$+0.4$	+0.3	$+0.3$	+0, 3	$+0.3$	+0.4	+o\%	+0.8	+0.6	-	-0'9	-i5	$-1 \cdot 3$	-0.8	-0.2	0	\bigcirc	+0.t	+0.1	+0.3	+0.3	+0.2	+0. 3	+0.3
November	$+0.3$	$+0 \cdot 4$	+0.3	+0.3	$+{ }^{+} \cdot 4$	+0.4	+0.3	+o. 1	$+0.1$	-0.3	-0.6	-1'J	-r 3	-0.9	-0.4	-0.1	+0.1	+0.2	+0.2	+0.2	+o. 3	+0.3	+0.2	+0.1	+o. 1
December	+0.4	$+0.4$	+0.4	$+{ }^{+}$	+0.4	$+0.3$	+0.2	-0.1	-0.4	-0.7	-0.9	-10	-0.7	-0.5	-0.4	-0.3	\bigcirc	+0.3	+0.2	$+0.4$	$+0.4$	+0.4	+0.3	+0.3	+0.1
Means	-	\cdots	...	\cdots	\cdots	...	\cdots	\ldots	\cdots	,	\ldots	...	\cdots	\ldots	\ldots	...	\ldots	\ldots	-

NO. 26 Party (MAGNETIC).
Observations of Dip Barrackpore Inductor No. 46 by Schulze.

Hourly Means of the Declination as determined at Barrackpore from the selected guict days in 1907.

Houss.	Mid.	'	2	3	4	5	6	7	8	9	10	"	Noon.	13	14	15	16	${ }^{17}$	${ }^{8}$	19	20	${ }^{21}$	${ }^{22}$	23	: id .	Means.
Declination E. $1^{\circ}+\quad$ Winter.																										
Months.															,											
January	120	119	H9	117	11.6	115	115	H^{\prime}	$12 \cdot 4$	$13 \cdot 5$	$13^{\prime 2}$	11.9	I23	115	11.4	12.0	$12 \cdot 6$	12.6	12%	$1{ }_{1} 9$	12:1	I'9	118	$1{ }^{1}$	H.8	12.0
February	$10 \cdot 8$	10.8	109	109	$10^{\circ} 7$	106	104	$10^{\circ}+$	$1{ }^{1} 4$	$12 \cdot 3$	12.6	116	$10 \cdot 3$	10.1	$10 \cdot 3$	106	11.	H'3	$1{ }^{1}$	$1 \cdot 1$	H^{1}	11%	111	11.2	H_{3}	1×0
March	109	1.1	HO	$1{ }^{\circ}$	107	10.5	106	11.6	130	139	${ }_{13} 8$	126	10.8	94	93	$10 \cdot 2$	107	11.1	109	$1{ }^{1}$	1.0	110	10.8	109	ı\%	$11^{1} 2$
Ocwber	$8 \cdot 7$	8.7	8.7	8.6	$8 \cdot 5$	8.5	8.8	$10^{\prime 2}$	109	${ }^{10} 7$	$9+$	76	$6 \cdot 5$	6.4	72	8.2	8.9	8.7	8.2	8.4	8.4	8.4	$8 \cdot 5$	$8 \cdot 5$	8.6	$8 \cdot 6$
Noycmber	84	$8 \cdot 5$	8.4	8.3	8.2	$8 \cdot 2$	8.0	8.	8.9	9.5	9.0	$8 \cdot 3$	79	$8 \cdot 1$	8.1	$8 \cdot 1$	$8 \cdot 5$	8.2	8.0	8.8	$8 \cdot 8$	$8 \cdot 6$	8.6	8.7	$8 \cdot 7$	84
December	78	78	77	77	76	$\dot{T}+$	73	68	74	$8 \cdot 5$	93	8.6	$8 \cdot 1$	77	79	$8 \cdot 0$	$8 \cdot 1$	$8 \cdot \mathrm{r}$	79	8.0	79	79	79	79	78	79
Means	9 's	98	9.8	97	9.6	95	94	98	10.7	15.4	H^{\prime}	${ }^{10} 1$	9.2	8.9	$9{ }^{\circ}$	95	10\%	10.0	97	97	99	98	9.8	9%	$9 \cdot 9$	$9 \cdot 9$

Diurnal Inequality of the Declination at Barrackporeas deduced from the preceding Table.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	${ }^{11}$	Noon.	13	14	15	16	17	18	19	20	${ }^{11}$	22	23	Mid.
Winter.																									
Months.					,		,										,						,	,	
January	\bigcirc	-0.1	-0.1	-0.3	-0.4	-0.5	-0'5	-0.5	+0.4	+1•5	$+1 \cdot 2$	-. 1	-0.7	-0.5	-0.6	-	+0.6	+0.6	0	-0.1	$+0.1$	-0.1	-0.2	-0.1	-0.2
February .	-0.2	-0.2	-0.1	$\rightarrow 0.1$	-0.3	-0.4	-0.6	-0.6	+0.4	+1'3	+1.6	+0.6	-0.7	-0.9	$-{ }^{\circ} 7$	-0.4	+0's	+0.3	0	+0.1	+0.1	+0.1	+0'1	+0.2	+0.3
March	3	-0:	-0.2	-0.2	-0.5	-0'7	-0.6	+0.4	+ $1 \cdot 8$	+2'7	+2.6	$+1 \cdot 4$	-0.4	-1.8	-19	-I.0	-0'5	-0.t	-0.3	-0. 2	-0.2	-0.2	-0.4	-0°	$-\mathrm{O}^{2}$
October	+0:1	+0:	+0.1	0	-0.1	-0'1	+0.2	+r.6	+2.3	+2.1	+0.8	-1.0	-2.1	-2:2	-1.4	-0.4	+0.3	+0.1	04	$\bigcirc \cdot 2$	-0.2	-0.2	-0.	$\rightarrow 0.1$	$\bigcirc 0$
November		+0.1	-	$-0^{\prime} 1$	-0.2	$\rightarrow 2$	-0.4	-0.3	+0.5	$+1 \cdot x$	+0.6	-0.1	-0.5	-0.3	-0.3	-0.3	+0'1	-0.2	-0.4	$+0.4$	+0.4	+0.2	+0.2	+0.3	+0.3
December	-0.1	-0.1	-0.2	-0.2	-0. 3	-0.5	-0.6	-1.1	-0.5	+0.6	+1.4	+o. 7	-0.2	-0.2	-	+0.1	+0.2	+0.2	-	+0.1	0	-	\bigcirc	0	-0.1
Means	$\rightarrow 0$	\rightarrow - 1	$\bigcirc 1$	-0.3	-0.3	-0.4	-0.5	-0.1	+0.8	+ r 5	+ r^{3}	+0.2	-0.7	-80	-0.9	-0.4	+o's	+0.1	-0.2	-		-0.1	-0.1	o	-
Summer.																									
April .	$+{ }^{+} 3$	+0'5	+0'5	+0.3	0	+0.1	+0.9	+2.2	+24	+1.6	\bigcirc	-1.6	-2.4	-2'4	-1.8	-0.6	$+0^{\circ}$	$+0.3$	+0.1	0	\bigcirc	-	+o. 1	+0. 2	$+\mathrm{O}_{2}$
May . -	+0.4	+o 7	+0.8	+0.6	+0.6	+0.8	+23	$+30$	+2.5	+0.8	-0.7	-19	-26	-2.5	-19	-0.9	\bigcirc	+0.6	$+{ }^{+} \cdot 4$	-0.3	-0.6	-0.5	-0.4	\bigcirc	$+0^{\circ}$
June .	+0.1	$+0 \cdot 4$	+0.5	+0.5	+0.4	+0.6	$+\therefore 3$	+3*4	+3.5	+2.1	\bigcirc	-2\%	-3.0	-31	-2.6	-r'7	-0.7	-0.2	-0.1	-0.2	-0.3	-0.3	\bigcirc	\bigcirc	+0. 1
July .	+0.1	+0.2	+0.3	+0.4	+0.4	+0.6	+ 19	+3*4	+ 36	+2'3	+0.8	-12	-2.5	-31	-2.7	$-3 \cdot 2$	$-1 \cdot 1$	-0.2	$+0.4$	-0.1	-0.5	-0.4	-0.2	+o. 1	+o'1
August	-0.1	-	+0.4	+0.5	+0.5	+0.7	+20	+2.8	+2'5	+1.3	-0.3	-1.8	$-2 \cdot 3$	-2.3	-1.8	-10	-0.I	+o. 6	+o. 3	-0.4	-0.5	-0.5	-3	-0.2	-0.1
September	+0.2	+0.4	+0.5	+0.5	+0.5	+0.5	+15	$+3^{\circ}$	$+3: 2$	+2'0	+0.1	-1.8	-3.0	-35	-27	-0.9	$+0.4$	+0.6	\bigcirc	-0^{2}	-0.2	-0.1	-0.1	$\underline{+0.1}$	$+0.2$
Means	+0.2	+0.4	+0.5	+0.5	+0.4	+0.6	+18	+30	+3.0	$+17$	0	-177	-2.6	-2.8	-2.2	-1.2	-0^{\prime}	$+0^{\prime} 3$	$+0^{2}$	-0.2	-0.3	-0.3	-1	\bigcirc	+0.1

Hourly Means of Horisontal liarce in C. G. S. Units (corrected for temperature) at Barrackpore from the selected quiet days in 9007.

Hours.	MiJ.	!	2	3	4	5	6	7	8	9	10	\square	Noon.	13	14	15	16	17	18	19	20	21	22	${ }_{3}$	Mid.	Means.
37,000 C. G. S. $+\quad$ Winter.																										
Months.	γ	$\boldsymbol{\gamma}$	γ	γ	7	γ	γ	γ	$\boldsymbol{\gamma}$	γ																
Ianuary	275	274	275	274	$2: 5$	276	277	273	282	288	294	298	300	300	295	292	285	279	276	274	271	269	269	270	274	281
February	270	271	272	271	271	272	27+	276	382	288	296	293	307	307	300	290	284	275	273	272	272	269	268	270	273	280
March	269	269	268	269	270	271	273	275	28 I	292	304	315	310	304	297	287	279	276	278	278	274	272	271	273	273	281
October	27+	274	27+	275	277	278	278	276	278	283	291	305	312	310	299	289	283	282	232	280	278	276	277	278	278	234
November	280	280	280	281	281	282	282	289	295	301	310	316	316	310	302	294	288	283	293	283	291	279	280	282	284	290
December	279	279	280	280	231	283	29_{5}	292	299	308	314	315	310	$3{ }^{3} 7$	299	290	288	25_{4}	284	283	281	279	282	283	287	290
Means	275	$27+$	275	275	${ }_{276}$	277	278	291	286	293	302	307	309	306	299	290	285	280	279	278	276	274	275	276	278	${ }^{28}+$

NO. 26 PARTY (MAGNETIC).
Diurnal Inequality of the Horizontal Force at Barrackpore as deduced from the preceding Tatle.

Hous	Mid.	1	2	3	4	5	/6	7	8	9	${ }^{10}$	\because	Noon	19	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
Months.	7	$\boldsymbol{\gamma}$	γ	γ	γ	Y	Y	γ	y	γ	7	7	$\boldsymbol{\gamma}$	\boldsymbol{r}	\boldsymbol{r}	γ	γ	7	γ	γ	γ	\boldsymbol{r}	\boldsymbol{r}	γ	7
January -	-6	-7	-6	-7	-6	-5	-4	-3	+1	+7	+13	+17	+ 19	+19	+14	+11	+4	-2	-5	-7	-10	-12	-12	3 - 11	-7
February	-10	-9	-8	-9	-9	-8	-6	-4	+2	+8	$+16$	+18	+27	+27	+20	+10	+4	-5	-7	-8	-8	- 11	-12	-10	-7
March	-12	-13	-13	-12	-11	-10	-8	-6	\bigcirc	+4	± 23	+ 30	+29	+23	+16	+6	-2	-5	-3	-3	-7	-9	-10	-8	-8
October	-10	- 10	-10	-9	-7	-6	-6	-8	-6	-1	+7	+21	+28	+26	+15	+5	-1	-2	-2	-4	-6	-8	-7	-6	-6
November	-10	-10	-10	-9	-9	-8	--8	-1	+5	+11	+20	+26	+26	+20	+12	+4	-2	-7	-7	-7	-9	- II	-10	-8	-6
December	-11	- 11	-10	-10	-9	-7	-5	+2	+9	+18	+ 24	+25	+ 20	+17	+9	0	-2	-6	-6	-7	-9	-11	-8	-7	-3
Means	-9	-10	-9	-9	-8	-1	-6	-3	+2	+9	+18	+23	+25	+22	+15	+6	+1	-4	-5	-6	-8	-10	-9	-8	-6
Summer.																									
April	- $1+$	-16	-18	-18	-16	-15	-12	-10	+1	+18	+3+	+ +2	+45	+40	+27	+12	-1	-8	-13	-15	-18	-18	-16	-12	-10
May .	-12	-12	-12	-10	-10	-10	-8	-5	\bigcirc	+8	+22	+26	+30	+26	+17	+11	$\rightarrow 2$	-9	-11	-11	-9	-8	-8	-9	-9
June -	-10	-8	-	-11	-10	-7	-6	-I	+4	+10	+22	+26	+30	+28	+20	+9	-2	-10	-13	-13	-12	-12	-12	-9	-10
uly	-9	-9	-11	-12	-12	-12	-7	-4	+3	+9	+17	+22	+23	+21	+14	+8	+2	-4	-5	-8	-8	-8	-7	-5	-5
August	-8	8	-9	-9	-II	-11	-7	-5	-4	+4	+ 14	+19	+25	+26	+20	+15	+5	-4	-7	-7	-8	-8	-8	-8	-6
epteinber	-14	- 11	-12	-12	-12	-10	-8	-11	-14	-9	+6	+22	$+30$	+32	+27	+18	+7	-1	-5	-5	-6	-7	-6	-6	-6
Means .	-II	-11	-12	-12	-12	-11	-8	-6	-2	+7	+19	+26	$+30$	+29	+21	+12	+1	-6	9	-10	-10	-10	-10	-	-8

Hourly Means of Vertical Force in C. G. S. Units (corrected for tomperature) at Barrackpore from the selected quiet days in 1907.

:crine	Mid.	,	2	3	4	5	6	7	${ }^{8}$	9	10	11	Noon.	${ }^{13}$	${ }^{4}$	${ }^{5}$	16	17	${ }^{8}$	19	${ }^{20}$	${ }^{21}$	22	${ }^{3}$	Mid.	Means.
${ }_{21,000}$ C. G. S. + Winter.																										
Months.	γ	γ	γ	γ	γ	γ	7	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	\boldsymbol{r}	γ											
January	\ldots	\ldots"	\cdots	\cdots
February	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	...	\cdots
March	\ldots	\cdots	\cdots"	...
October	$99+$	$99+$	994	994	994	995	995	997	992	985	979	9;6	973	978	982	984	$9^{8} 4$	98_{4}	986	989	990	990	991	991	[991]	988
November	99	995	995	995	995	995	996	996	995	990	987	985	984	$\mathrm{g}_{8}+$	984	986	9^{87}	989	991	993	993	994	995	996	[995]	991
December	998	993	998	999	999	1,000	1,000	1,000	1,000	998	993	989	987	986	986	989	99	995	997	99^{8}	99^{8}	998	${ }_{9} 98$	998	[998]	996
Means	\ldots	

Diurnal Inequality of the Vertical Force at Barrackpore as deduced from the preceding Table.

Hours.	Mid.	'	2	3	4	5	6	7	a	9	${ }^{10}$	11	Noon.	13	14	- 15	16	17	18	19	20	21	${ }^{2}$	${ }^{23}$	Mid.
Winter.																									
Months.	7	γ	γ	7	γ	${ }^{\gamma}$	γ	7	γ	γ	Y	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	y							
January	-	\cdots	\cdots	\cdots	\cdots
February	\ldots	\ldots'	\cdots
March	-.	\cdots
October	+6	+6	+6	+6	+6	+7	+7	T9	+4	-3	-9	-12	-15	-10	-6	-4	-4	-4	-2	+1	+2	+2	+3	+3	+3
November	+4	+4	+4	$+4$	+4	+4	+5	+5	+4	-1	-4	-6	\rightarrow	-7	-7	-5	-4	-2	-	+2	+2	+3	+4	+5	+4
December	+2	+2	+2	+ 3	+ 3	+4	+4	+4	++	+2	-3	-7	\rightarrow	-to	-. 10	-7	-2	-1	+	+2	+2	+2	+ 2	+2	+2
Means
Summer.																									
April .	+7	+7	+7	+6	+7	+7	+8	+5	-4	-11	-14	-14	-10	-8	-5	-2	-1	o	-1	-	+1	+2	+2	+3	+4
May	+5	+5	+5	+5	+5	+6	+6	\bigcirc	-7	-12	--11	\rightarrow	-7	-4	-1	-	-1	-	+1	+1	+3	++	+4	+	+4
June	+7	+7	+7	+6	+7	+7	+8	+3	-2	-7	-11	-15	-13	-7	-4	-2	-1	0	-	-	+1	+ 3	+3	+ 3	+3
July .	++	+4	+4	+4	+4	+4	+6	+3	-2	-5	-8	-9	-7	-7	-8	-7	-4	-2	-1	+1	+ 3	+4	+	+3	+3
A.ugust	+5	+5	+5	+5	+5	+5	+6	+3	-	-1	-4	-6	\rightarrow	-6	-5	-5	-4	-4	-	-	+2	+3	+3	+3	+3
September	+6	+ 6	+6	+6	+6	+6	+7	+5	0	-6	-11	-13	-12	-11	-7	-5	-4	-3	-1	-	+2	++	+5	+6	+6
Means	+6	+6	+6	+6	+6	+6	+7	+4	-2	-1	'9	-II	-9	$\rightarrow 7$	-5	-3	-2	-1	-	+1	+2	+4	+4	+4	$+$

Hourly Means of the Dip as determined at Barrackpore from the selected quiet days in 1907.

Hours.	Mid.		2	3	+	5	6	,	8	9	\cdots	${ }^{\prime}$	Noon.	${ }^{13}$	14	15	16	17	${ }^{18}$	19	20	21	22	${ }^{23}$	Mid.	Means.
Dip. $30^{\circ}+\quad$ Winter.																										
Months.																						,	,	,	,	
January	\ldots	\cdots	\cdots	\ldots	\cdots	..'	\cdots	\ldots	'*'	."	\cdots	.."	'*'	\ldots	...	\cdots	\cdots	..	\cdots	\ldots
Fcbruary	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots
March	\cdots	\cdots	\cdots	:-	...	\cdots	\cdots	\cdots	\ldots	...	\ldots	...
Octuber	32.6	32.6	326	$32 \cdot 5$	$32 \cdot 5$	32.5	33°	327	323	31.6	$3^{\circ} 9$	$30^{\circ} 1$	29.6	30°	$30 \cdot 8$	$3{ }^{3} \cdot 3$	31.6	$3{ }^{1.6}$	317	32°	32:2	32.3	$32^{\prime} 3$	$32 \cdot 3$	$32 \cdot 3$	$3{ }^{18}$
Novemiber	32 4	324	$32 \cdot$	3\%	32-4	323	$32 \cdot 4$	$3^{2} \cdot$	31.8	$3{ }^{1} 3$	307	$30^{\circ} 3$	30.2	$30^{\circ} 5$	30.8	$3{ }^{3} 3$	31.6	$3{ }^{1} 9$	$3^{2 \cdot 1}$	32'2	32^{2}	$32 \cdot 4$	$32 \cdot 4$	$3{ }^{2} 4$	$3^{2 \%}$	$3^{1} 8$
December	327	327	${ }^{32} 6$	$3{ }^{2} 7$	$3^{2} \cdot 6$	32.6	$32 \cdot 6$	$32 \cdot 3$	$3{ }^{2 \cdot 0}$	$3{ }^{1} 5$	$3{ }^{3 \circ} 9$	306	$30^{\circ} 7$	$30^{\circ} 7$	$3^{1 \times 1}$	31.6	$3^{3{ }^{2} 0}$	32.3	$32 \cdot 4$	32.5	$32 \cdot 6$	32.7	$32 \cdot 5$	32.5	$3{ }^{2} 3$	$32^{2} \cdot$
Means	\cdots'.	\cdots
Summer.																										
April	29.8	29.8	29.9	29.9	29.8	29.3	29.8	29.5	28.4	273	26.4	261	$26 \cdot 2$	26.6	273	28.1	28.7	290	29.2	293	29'5	296	29*5	29.4	294	28%
May	306	$30 \cdot 6$	30.6	$30 \cdot 5$	$30 \cdot 5$	30.6	30.5	$29 \cdot 9$	29.3	28.6	28.1	281	28.0	28.4	29.0	$29 \cdot 3$	29.7	$30^{\circ} \mathrm{I}$	$30 \cdot 3$	30.3	$30^{\circ} 3$	$30 \cdot 3$	$30^{\circ} 3$	$30^{\circ} 4$	$30^{\circ} 4$	29.8
June .	306	306	30.6	30.6	30.6	$30 \cdot 5$	30.6	300	$20 \cdot 5$	28.9	29.1	277	277	$28 \cdot 1$	$28 \cdot 7$	29.3	29.8	$3^{\circ} \mathrm{z}$	$30^{\circ} 3$	$30^{\circ} 3$	30°	$30 \cdot 5$	$30^{\circ} 5$	$3{ }^{3} 3$	30.4	29.8
July	312	31.2	313	31.4	314	31.4	$3{ }^{\prime} 3$	$3{ }^{\circ} \mathrm{O}$	303	29.9	29.4	29.1	$29^{\prime 2}$	29'3	29.5	29.8	$30^{\circ} 3$	306	$30^{\circ} 7$	$3 \mathrm{r}^{\circ}$	$31 \cdot 1$	31.2	$31^{1} 2$	3ro	33°	30.6
August	3^{1+}	314	315	3'5	3 F 5	$3{ }^{1 / 5}$	$3 \cdot 4$	31.2	309	30°	29.9	296	293	293	296	29.8	$3^{\circ} 3$	$30 \cdot 6$	$30^{\circ} 9$	$3{ }^{\circ} \mathrm{O}$	31^{2}	$3{ }^{1} 3$	$31^{1} 3$	313	31^{12}	30.8
September	320	319	31.9	319	3 r 9	31.8	31.8	$3{ }^{1} 8$	31.6	31°	30°	29.3	29.0	29°	$29 \cdot 5$	29.9	30.5	30.8	31.2	31.2	31.4	$3 \cdot 6$	31.6	3'7	31.7	$3{ }^{\circ}$
Means	3^{09}	30.9	$3{ }^{\circ}$	31°	31°	$30 \cdot 9$	$30 \cdot 9$	30.6	300	29.4	28.7	$28 \cdot 3$	28.2	$28 \cdot 5$	28.9	29.4	299	30°	30\%	$30^{\circ} 5$	306	$30 \cdot 8$	$3{ }^{\circ} 7$	30.7	30.7	$30^{\prime \prime}$

Diurnal Inequality of the Dip at Barrackpore as deducea' from the preceding Table.

NO. 26 PARTY (MAGNETIC).
Observations of Dip Toungoo, Dip Circle No. 137 by Barrow and Inductor No. 44 by Schulze.

NO. 26 PARTY (MAGNETIC).
Hourly Means of the Declination as dotermined at Toungoo from the selected quiet days in 1907.

Diurnal Inequality of the Declination at Toungoo as deduced from the preceding Table.

Hourly Means of Horisontal Force in C．G．S．Units（corrected for temperature）at Toungoo from the selected quiet days in 1907.

Hours．	Mid．	$:$	2	3	4	5	6	7	8	9	10	＂	Noon．	13	${ }^{14}$	15	16	17	${ }^{2} 8$	19	20	21	22	23	Mid．	Meass．
3^{8000} C．G．S．t Winter．																										
Monthg．	γ	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	7	$\boldsymbol{\gamma}$	7	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	\boldsymbol{r}	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	\boldsymbol{r}	γ	γ	$\boldsymbol{\gamma}$
Ja uary	705	709	709	708	710	711	713	714	718	727	739	746	743	737	732	727	718	714	710	709	748	706	704	705	706	718
February	696	697	698	700	701	702	703	706	711	718	727	736	74 I	739	727	714	706	702	700	702	701	697	695	696	698	709
March	714	733	713	713	786	717	718	722	733	749	766	77^{8}	776	765	753	738	729	724	725	724	723	721	720	720	719	732
October	77 ！	770	769	770	772	772	772	770	776	787	801	815	819	812	797	785	778	779	781	779	777	773	775	777	776	782
November	781	783	7^{88}	782	781	783	782	787	795	806	817	826	826	818	809	797	787	782	784	783	781	781	783	786	785	792
December－	789	791	792	791	792	793	797	803	810	820	828	832	828	822	811	804	798	795	794	792	793	791	792	793	795	802
Means	743	744	744	744	745	746	748	750	757	768	780	789	789	${ }_{7} 82$	772	761	753	749	749	77^{8}	747	745	$7+5$	746	$7+7$	756

	\％
足号号古员克	$\stackrel{\square}{2}$
答志き员克	き
気缶号号贺兌	き
	寺
只気き虽号兌	\pm
䇜罗号呂员吕	\ddagger
※尔号员吉兌	\％
凩式栜员员吕	は
哭吉吉誌吉志	尔
式三员员志呙	$\stackrel{\text { ® }}{ }$
	$\stackrel{\sim}{*}$
	※
䒘贺䒼告员含	呙
	号
告员太贺吴只	욫
太 成员点贺合	$\stackrel{\circ}{8}$
足名吉名员令	呙
	き
式志き令员号	\ddagger
	\％
	$\stackrel{\circ}{2}$
哭気気足足员	\％
	$\stackrel{\circ}{4}$
	ま
	$\stackrel{+}{2}$
creccos	$\stackrel{\text { 䔍 }}{\text { ¢ }}$

Diurnal Inequality of the Horizontal Force at Toungoo as deduced from the preceding Table.

Hours.	Mid.	1	;	3	4	9	6	7	8	9		${ }^{11}$	Noon.	13	${ }^{14}$	15	16	17	19	19	20	21	22	23	Mid.
Winter.																									
Months.	γ	\boldsymbol{y}	7	γ	7	γ	7	7	$\boldsymbol{\gamma}$	γ	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$
January	-13	-9	-9	-10	-8	-7	-5	-4	0	+9	+21	+28	+25	+19	+14	+9	0	-4	-8	-9	-10	-12	-14	-13	-12
Pebruary	-13	-12	-11	-9	-8	-7	-6	-3	+2	+9	+18	+27	+32	+30	+18	+5	-3	-7	-9	-7	-8	-12	- 14	-13	-II
March .	-18	-19	-19	-19	-16	-15	-14	-10	$+1$	+17	+34	+46	+4	+33	+21	+6	-3	-8	-7	-8	-9	-11	-12	-12	-13
October	-11	-12	-13	-12	-10	-10	-10	-12	-6	+5	+19	+33	+37	+30	+15	+3	-4	-3	-1	-3	-5	-9	-7	-5	-6
November	-11	-ro	- 11	-10	-11	-9	-10	-5	+3	+14	+25	+34	+34	+26	$+17$	+5	-5	-10	-8	-9	-11	- 11	-9	-6	-7
December	-13	-11	-10	-11	-10	-9	-5	$+1$	+8	+18	+26	$+30$	+26	+20	+9	+2	-4	-7	-8	-10	-9	-11	-10	-9	-7
Means	-13	-12	-12	-12	-11	-10	-8	-6	+1	+12	+ ${ }^{4}$	+33	+ 53	+26	+16	+5	-3	-7	-7	-8	-9	-11	- 11	-10	-9
Summer.																									
April	18	-16	-20	-20	-19	-18	-16	-10	+8	+29	+ +4	+5I	+46	+38	+2+	+9	-3	-9	- 11	-15	-16	-16	-17	-15	-13
May	-7	-8	- 11	-9	-7	-7	-6	-4	+9	+19	+25	+32	+28	+20	+ 10	+ 1	-6	-13	-17	-19	-13	-10	-9	-8	-8
June	-17	-13	-12	-15	-15	-13	-10	-6	+2	+14	+25	+3+	+35	+33	+22	+7	-5	-11	-12	-12	-11	-9	-9	-8	-7
July	- 11	-11	-11	-13	-13	-14	-9	-4	+3	+15	+22	+ 7	+26	+21	+14	+7	-1	-8	-10	-7	-6	-6	-6	-5	-6
August	-10	-9	-9	-12	-12	-13	-11	-7	-1	+7	+18	+23	+25	+25	+18	$+13$	+3	-5	-7	-5	-5	-5	-6	-6	-5
September	-16	-13	-14	-15	-14	-13	-12	-16	-14	-2	+ 16	+31	$+36$	+34	+26	$+15$	+3	-5	-5	-5	-6	-7	-7	-7	-7
Means	-13	-12	-13	-14	-13	-13	- 11	-8	+1	+14	+ 25	+33	+33	+29	+19	+9	-2	-8	-10	-10	-9	-9	-9	-8	-8

Hours.	Mid.	,	,	3	4	5	6	7	8	9	${ }^{10}$	11	Nooo.	13	14	15	${ }^{16}$	17	18	${ }^{19}$	20	21	${ }^{22}$	${ }^{23}$	mid.	Meass.
${ }_{16000}$ C.G.S. + Winter.																										
Monthe	γ	γ	r	γ	γ	γ	γ	γ	r	γ	γ	r	γ	γ	γ	7	γ									
January'	\cdots	\cdots	\cdots	\cdots	...	\ldots	\cdots	\cdots	...	\cdots	\ldots	...	\cdots	\cdots	\cdots	...	\ldots	\ldots	...
February	\cdots	...	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	...	\cdots	...	\ldots
March	\ldots	\cdots	\ldots
October	$4{ }^{98}$	481	48 t	48 r	48 t	482	484	435	480	47^{2}	46	462	464	472	477	480	480	476	478	481	481	481	482	483	483	47^{8}
November	496	496	496	456	496	497	497	498	499	493	487	483	482	485	490	493	494	492	493	495	495	496	497	498	45^{8}	+93
December	496	495	495	495	495	495	495	495	496	495	49^{2}	488	487	487	489	491	434	494	494	495	496	497	. 98	498	49^{8}	494
Means	\cdots	\cdots	\cdots	\ldots	...
Summer.																										
April .	471	471	471	470	470	471	474	47^{2}	463	456	455	456	455	462	467	471	472	469	466	467	468	470	470	471	472	467
May	476	476	476	475	475	477	480	475	466	459	456	459	461	467	473	477	478	476	473	+72	473	474	475	475	4;6	+72
June	469	469	468	408	469	470	475	47 t	462	454	451	451	453	459	$46+$	466	468	469	468	+66	467	468	469	469	470	465
July	476	476	475	475	475	475	480	47^{8}	47^{1}	465	460	457	45^{8}	46 r	463	468	469	47°	470	470	471	473	473	474	475	470
August	$4{ }^{83}$	44_{4}	484	485	485	486	490	486	479	471	467	467	466	469	473	479	484	482	480	481	481	483	483	$48+$	485	480
September .	483	484	484	484	484	484	489	487	476	464	457	455	458	465	476	482	483	479	476	${ }^{4} 7^{8}$	480	480	48	4^{82}	482	477
Means	476	477	476	476	476	477	48r	478	470	462	45^{8}	8	459	464	469	474	476	474	472	$4{ }^{2}$	473	475	475	4;6	471	47^{2}

Diurnal Inequality of the Vertical Force at Toungoo as deduced from the preceding Table.

Hours.	Mid.	1	2	3	4	5	6	1	8	9	10	1	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
Mionths.	\boldsymbol{r}	\boldsymbol{r}	$\boldsymbol{\gamma}$	γ	γ	\boldsymbol{r}	\boldsymbol{r}	y	y	$\boldsymbol{\gamma}$	7	\boldsymbol{r}	$\boldsymbol{\gamma}$	\boldsymbol{r}	\boldsymbol{r}	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	7	γ	γ
January \cdot	\cdots	...	\cdots	\cdots	${ }^{*}$...	\cdots	\cdots-	\ldots	\ldots	\cdots	\cdots
February	\cdots	...	\cdots	\cdots	\cdots	...	\cdots	...	\cdots	\cdots	\cdots	.'.	\cdots	\cdots	...	**	'**	\cdots''
March	..	\ldots	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots	...	\cdots	\cdots	\cdots'	\cdots	\cdots	\cdots	\cdots	..'
October	+3	+3	+3	+3	+3	+4	+6	+7	+2	-6	-13	-16	-14	-6	-1	+2	+2	-2	\bigcirc	+3	+3	+3	+4	+5	+5
November	+3	+3	+3	+3	+3	+4	+4	+5	+6	0	-6	-10	-II	-8	-3	0	+ 1	-1	0	+2	+2	+3	+4	+5	+5
December	+2	+ 1	+1	- 1	+1	+1	+1	+ 1	+2	+ 1	-2	-6	-7	-7	-5	-3	0	0	0	+1	+2	+3	+4	+4	+4
Mleans	\ldots	\cdots'.	\cdots'	\cdots	\cdots	-
Summer.																									
April	+ +	+4	+4	+3	+3	+4	+7		-4	-11	-12	-11	-2	-5	0	+4	+5	+2	-I	\bigcirc	+1	+3	+3	+4	+5
May .	+ +	+4	+4	+3	+3	+5	+8	+3	-6	-13	-16	-13	-II	-5	+1	+5	+6	+4	+1	\bigcirc		+2	+3	+3	+
Jane	- +t	+4	+3	+3	+ +	+5	+10	+6	-3	-11	-14	-14	-12	-6	-1	+1	+3	+4	+3	+1		+3	+4	+4	+5
July .	- +6	+6	+5	+5	+5	+5	+10	+8	+ 1	-5	-10	-13	-12	-9	-7	-2	-1	\bigcirc	0	0		+3	+3	+4	+5
August	- +3	+ +	++	+5	+5	+6	+10	+6	-1	-9	-13	-13	- 14	-11	-7	- 1	+4	$+2$	\bigcirc	+1	+1	+3	+3	+4	+5
Seplember	. +6	+7	+7	+7	+1	+7	$+12$	+ 10	-1	-13	-30	- 22	-19	-12	-1	+5	+6	+2	-1	+1	+3	+ 3	+4	+5	+5
Means	+ +	+5	++	++	+4	+5	+9	+6	-2	-	-14		-13	-8	-3	+2	+4	+2	0	o	+1	+3	+3	+4	+5

Hourly Means of the Dip as determined at Toungoo from the selected quiet days in 1907.

Hours.	Mid.	1	2	${ }^{3}$	4	5	6	7	8	9	10	1	Noon.	13	14	15	16	${ }^{17}$	18	19	20	21	22	23	Mid.	Means.
p. $22^{\circ}+\quad$ Winter.																										
Months.	,	,	,	,	-	,	,	,	,	,	,	,	-	,	,	,	,	,	,	,	,	,	-	,	,	,
January -	\cdots	\cdots	...	\cdots	\cdots	\cdots	'*'	...	\cdots'	.'*	*-	..	\cdots	.-'	'*	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	...
February .	\cdots	\cdots	\cdots	"'*	-"	\cdots	\cdots	..	\cdots	\cdots	\cdots	*'	\cdots	- ${ }^{\prime}$.'.	\cdots	.".	.'.	...	\cdots	.'.	.."	...	\cdots	\cdots	...
March	\ldots	\ldots	\cdots	.'	- ${ }^{\circ}$	\cdots	- ${ }^{\circ}$	\cdots	…	\cdots	*															
October	6r. 8	61.8	619	6r.8	617	61.8	620	621	61.6	$60 \cdot 6$	596	58.9	59%	59.8	$60 \cdot 7$	$61 / 3$	615	6 I 't	$61 \% 2$	615	61.6	617	617	61.8	61.8	$61 \cdot 2$
November .	62.6	62.6	62.6	62:6	62.6	62.6	627	$62 \cdot 5$	$62+$	6 r 6	$60 \cdot 8$	$60 \cdot 2$	60.1	606	613	619	62.3	623	62.3	62.5	$62 \cdot 5$	62.6	626	62.6	$62 \cdot 6$	62\%
December	62.3	68.2	$62 \cdot 2$	62.2	62.2	62:1	62°	6t.8	6r'7	613	60.8	604	604	60.6	6 r 1	615	69	620	62.1	62.2	62.2	$62+$	62.4	$62 \cdot$	$62 \cdot 3$	61.8
Means	\cdots	'	..'	...	'..	\cdots	...	\cdots

Summer.

April	623	$62 \cdot 3$	62.4	62'3	62:3	62'3	625	62.2	$60 \cdot 9$	59*7	59.2	59\%	59°	599	60%	6 r 5	61.9	$6 \mathrm{C} \cdot 9$	617	6199	$62^{\prime} 1$	62.2	62.2	$62 \cdot 3$	$62 \cdot 3$	615
May	626	627	62.7	62.6	62.6	627	629	625	614	$60 \cdot 5$	60\%	$60 \cdot 1$	60.4	61.1	619	$62 \cdot 5$	$62^{\circ} 7$	62.8	62.7	62.7	62.6	626	62.6	62.6	627	$62 \cdot 1$
June	62.1	619	61.8	6199	6\%0	62\%	62.3	$6 \mathrm{r} \cdot 8$	$60 \cdot 9$	59.9	59.3	590	59°	597	60_{4}	6 r 1	61.6	6r'9	618	617	617	$6 \mathrm{r}^{7}$	$6 \mathrm{r} \cdot 8$	61.8	$6 \mathrm{I} \cdot \mathrm{S}$	612
Ju! ${ }^{\text {d }}$	62.6	62.6	62.5	62.6	62.6	626	628	$62 \cdot 5$	617	60.9	603	59.9	60'0	60.4	60.8	61.4	617	620	62:1	620	620	$62 \cdot 2$	62^{2}	$62 \cdot 2$	62.3	618
August	626	62.6	62.6	628	62.8	62:	63	627	620	61.1	$60 \cdot 5$	$60 \cdot 3$	$60 \cdot 2$	$60 \cdot 4$	60'9	6 F 5	622	623	$62^{\prime} 3$	$62 \cdot 3$	623	62.4	62\%	625	62.6	620
September	62.5	62.4	62.5	62.5	$62 \cdot 5$	62.4	62.8	627	619	60.6	59.5	589	58.9	59:5	60.6	6r.4	6199	6r. 8	6r.6	617	$61^{\circ} 9$	$6{ }^{6} 9$	620	$62 \cdot 1$	62:1	615
Means	62.5	624	62.4	62.5	62.5	62.5	62.7	624	61.5	$60 \cdot 5$	598	595	59.6	60.2	60.9	61.6	62\%	62\%	62\%	62.1	62.1	62.2	62'2	623	623	61.7

NO. 26 PARTY (MAGNETIC).
Diurnal Inequality of the Dip at Tiungoo as deduced from the preceding Table.

Observations of Dip Kodaikínal Dip Circle No. 46 by Barrow. Inductor No. 45 by Schulse.

Odservations of Dip Kodaikánal Dip Circle No. 46 by Barrow. Inductor No. 45 by Schulze.

Hourly Means of the Declination as detcrmined at Kodaikánal from the selected quiet days in 1907.

Hious．	Mid．	1	3	3	4	5	6	7	${ }^{8}$	9	10	11	Noon．	13	${ }^{14}$	15	16	${ }^{7}$	18	9	${ }^{20}$	${ }^{11}$	22	${ }^{23}$	Mid．	Means：
Declination $\mathrm{W} \mathrm{O}^{\circ}+\quad$ Winter．																										
Months．																										
January	$3^{8} 7$	$3^{8.8}$	389	39°	39^{11}	$39^{\prime 2}$	39.5	39.7	393	38.5	$35^{5} 3$	$3^{8 \%}$	38.8	$38 \cdot 5$	$3^{8.2}$	380	$38 \cdot 3$	$38 \cdot 5$	$38 \cdot 8$	3^{86}	38.5	38.7	38.8	38.9	38.7	$3^{88} 8$
February	$3^{3} 9$	38.9	39°	39°	39°	393	396	397	394	$3^{8.8}$	38.2	$3^{8.5}$	$39^{\prime \prime}$	3^{89}	$3^{8.7}$	38.9	38．9	$3^{8.9}$	39^{1}	39°	38.9	38．8	38.8	38．9	$3^{8.8}$	390
March	393	39^{2}	$39^{\prime 2}$	39\％	397	39.8	39.8	$39^{\circ} 3$	38.9	38.3	378	$3^{8 \cdot 1}$	38.7	394	39.5	$39^{\prime 2}$	393	$3{ }^{\circ} 3$	39.3	3922	393	$39+$	39^{6}	39.6	394	39^{2}
October	41^{8}	418	${ }^{1} 8$	$4{ }^{1} 9$	＋2\％	420	$4{ }^{16}$	$\mathrm{H}^{\prime 2}$	$\mathrm{I}^{1 / 1}$	$4{ }^{\circ}$	$41^{\prime} 7$	426	42＇7	42°	$4{ }^{18}$	$4{ }^{1} 5$	$4{ }^{1} 4$	41^{8}	420	42°	$42^{\circ} \mathrm{O}$	42°	$4^{\circ} \mathrm{O}$	420	4＇9	418
November	＋2＇3	＋2：2	＋2．4	$42 \cdot 4$	$4^{2 \cdot 5}$	$42^{2}+$	$42^{2} 6$	43^{11}	$42^{\prime} 7$	$4^{2 \cdot 6}$	＋3：	432	$42 \cdot 8$	$42^{2} 3$	$4{ }^{1} 9$	45^{8}	41^{18}	42^{1}	$42^{\prime 2}$	42^{1}	$42^{2} 2$	423	$42 \cdot 5$	$42^{2} 4$	$42 \cdot 4$	42.4
December．	427	427	＋29	43°	43^{1}	43^{2}	436	44＇1	$4{ }^{4} 8$	$43 \cdot 3$	$42^{\prime} 9$	$42^{+}+$	$42^{\prime} 5$	$42 \cdot 5$	$4{ }^{2} \mathrm{I}$	420	42^{2}	$42^{\prime}+$	$4{ }^{2} 6$	42＇5	$4{ }^{2 \cdot 6}$	$4{ }^{2} 7$	42	43°	$4{ }^{2} 9$	428
Means	$40 \cdot 6$	＋0．6	407	40.8	409	41°	$4{ }^{1}$	$4{ }^{2}$	$4 \% 9$	$40^{\circ}+$	$40 \cdot 3$	40.6	40.8	406	$40 \cdot 4$	40.2	$40^{\circ} 3$	$40 \cdot 5$	407	$40 \cdot 6$	406	$40^{\circ} 7$	$40 \cdot 8$	40：8	$4{ }^{\circ} 7$	$40^{\prime} 7$

	产
	－
凩	$\stackrel{\infty}{+}$
	㫨
	$\stackrel{\circ}{+}$
	$\stackrel{8}{\square}$
¢ ¢＋¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	－
	$\stackrel{\square}{\square}$
	$\dot{4}$
	＋
	$\stackrel{\circ}{+}$
	$\stackrel{7}{7}$
令	等
	\％
	$\stackrel{\infty}{7}$
	\％
	号
	¢
	$\stackrel{\square}{6}$
	－
	莳
冎	$\stackrel{\square}{8}$
	荌
	$\stackrel{+}{9}$
	$\stackrel{3}{+}$
	－
	$\stackrel{\text { 号 }}{\text { ¢ }}$

Summer.																									
April	,	+0.2	+0.2			+ 41	tor!	+0.4	+0.8 +0.7	0	$\left\{\begin{array}{l} -0.4 \\ -0.8 \end{array}\right\}$	$\left\{\begin{array}{l} -1 \cdot 0 \\ -1 \cdot 3 \end{array}\right.$	-1.4	$\left\lvert\, \begin{gathered}-1.0 \\ -0.9\end{gathered}\right.$	$\|-0.6\|$	$\left\|\begin{array}{c} 0 \\ -01 \end{array}\right\|$	$\left\|\begin{array}{l} +0.4 \\ +0.5 \end{array}\right\|$	$\left\|\begin{array}{l} +0.3 \\ +0.0 \end{array}\right\|$	$\left\{\begin{array}{l} +0.3 \\ +0^{\prime 3} \end{array}\right\}$	$\left\lvert\, \begin{aligned} & +0.1 \\ & -0.2\end{aligned}\right.$	$\left\lvert\, \begin{array}{r}0 \\ -0.4\end{array}\right.$	$\left\|\begin{array}{r} 0 \\ -0.1 \end{array}\right\|$	(0		$\left\{\begin{array}{l} +o^{\prime 1} \\ +o^{\prime} 1 \end{array}\right.$
							+0.4	+10	$+\mathrm{x} \times+0.6$				-1•2	-0'9	-0.5										
May	- .	+0.2	+0.4	$+0.6$	+0.5	+04	+0.4		+1. +0.0				-1.6	-2.0	-1'5	-0.9	-0.2	+0.1	0	-0'3	-0.5	-0.4	$-0^{\circ} 3$	-0.3	-0.1
			+0.1	$+0.2$	+0.2	+0.2	+0,4	$+1 \cdot 2$	$+19+20$	+1.7	0	-0.9	-16		-is	-09	-0					-0.4	-0.3	-0'1	0
June		+o 1	+o'1	+02					+21+20	+ $\mathrm{I}^{6} 6$	+0.2	-0.3	-1.8	-8	-14	-0.7	-0.2	+0.4	+0.4	-0.2	-0.4	-0.4	-03	- 1	
July		$-0^{\circ} 1$	+0. 1	+0.1	+0.2	+0'2	+0.4	+10	+21 +20						-	-0.1	+0.6	+0.3	$+0_{3}$	-0.1	-0.3	-0.4	-0.3	-0.2	0
August		0	+0.1	+0.3	+0.3	+0.3	+0, 5	+1.2	$+18+13$	$+0.4$	-0	-										-0.3	-0.3	-0.2	-0.1
		$\cdot 1$	+0.2	+0.2	+02	+0.1	+0.2	$+0.9$	+ $19+2.1$	$+1 \cdot 1$	->':	-: ${ }^{\text {2 }}$	-2.0	-20	$-\mathrm{I}^{2}$	-0.2	+0.5	+06							
September																3		$0 \cdot 5$	+0. 2	0.1	-0.3	-0.3	-0.2	-0.1	0
Means		0.1	$\underline{+0.2}$	+0.3	± 03	$+0.2$	+o. 3	+10	$+16+15$	+0.7	-0.3	-1.	-1	-	-10	-3	3								

Hourly Means of Horizontal Force in C．G．S．Units（corrected for temperature）at Kodaikanal from the selected quiet days in 1907.

Hours．	Mid．	＇	2	3	4	5	6	1		9	10	${ }^{1}$	Noon．	${ }^{3}$	＇4	${ }^{5}$	16	17	18	19	20	${ }^{21}$	22	${ }^{23}$	Mid．	Means．
$37000+$ Winter．																										
Months．	γ	y	${ }^{\gamma}$	γ	γ	γ	γ	γ	7	γ	7															
January	405	$40+$	404	403	403	$40+$	$40+$	413	43°	457	483	4；2	489	472	452	43^{1}	419	416	414	409	407	405	404	404	403	± 26
February	393	393	395	395	394	$39+$	$39+$	386	． 409	430	460	475	485	467	44^{2}	424	415	409	406	402	397	34	373	392	372	415
March	391	391	391	393	393	393	390	396	419	457	494	514	511	491	457	431	415	410	411	404	401	399	39^{8}	395	395	423
October	406	407	409	410	409	409	407	415	444	479	513	522	507	475	449	435	432	429	425	420	417	415	414	413	42	436
Novemter	419	419	419	418	417	416	4.8	425	4.8	459	484	493	486	475	＋56	440	432	431	430	426	424	422	421	420	＋21	437
Decemb：r	423	420	420	420	422	42 I	425	4.6	451	464	475	484	482	475	466	454	$4{ }^{4}$	＋3＋	429	427	424	42	$4{ }^{24}$	423	427	4°
Means	406	466	40^{\prime}	407	406	406	406	414	432	458	${ }_{4} 8_{5}$	497	493	476	$45+$	436	426	432	419	45	412	＋10	409	＋08	408	＋30

	$\stackrel{\text { ¢ }}{+}$
ツ ¢ ¢ ¢ 9 9	$\stackrel{7}{7}$
ツ ¢ ¢ ヨ ¢ ¢	9
¢ ¢ ¢ ¢ ¢ さ＋	$\stackrel{7}{7}$
	$\stackrel{7}{7}$
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	\pm
$\stackrel{\text { の ¢ ¢ ¢ ¢ ¢ }}{\ddagger}$	$\stackrel{+}{+}$
号 \ddagger ¢ ¢ す	\ddagger
号	$\stackrel{1}{5}$
	ฐ
艀	\％
字ま号号皆京	李
	F
	字
	8
	产
ず号	$\stackrel{\square}{\square}$
品 号号 ¢ ¢ ¢ \％\％	$\stackrel{\circ}{7}$
	9
	E
	$\stackrel{\circ}{\square}$
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	\％
号享	－
¢ 夺名 ¢ ¢ ¢ 号	$\stackrel{\square}{9}$
帤 ¢ ¢ ¢ ¢ ¢ ¢ ¢	$\stackrel{\circ}{8}$
	\％
	$\stackrel{\stackrel{n}{5}}{\substack{\text { ¢ }}}$

Diurnal Inequality of the Horizontal Force at Kıdaikinal as deduced from the preceding Table.

Hours.	Mid.	1		3	4	5	6	7	8	9	10	"	Noon.	13	14	15	16	17	13	19	20	21	22	${ }^{2}$	Mid.
Winter.																									
Montis.	y	$\boldsymbol{\gamma}$	γ	y	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	\boldsymbol{y}	$\boldsymbol{\gamma}$	\boldsymbol{y}	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7
January	-21	-22	-22	-23	-23	-22	-22	-13	+4	+31	+57	+66	+63	$+46$	+26	+5	-7	-10	-12	-17	-19	-21	-22	-22	-23
February	22	-22	-20	-20	-21	-21	-21	-19	-6	+ 15	+ +5	+60	+70	$+5^{2}$	$+27$	+9	0	-6	-9	-13	-18	-21	-22	-23	-23
March	-32	-32	-3^{2}	-30	-30	-30	-33	-27	-4	+3+	+71	+91	+88	+68	+3t	+8	-8	-13	-12	-19	-22	-2t	-25	-28	-28
October	-30	-29	-27	-26	-27	-27	-29	-21	+8	+ +3	+71	+85	+71	+39	+13	-1	-4	-7	-11	-16	-19	-21	-22	-23	-24
November	-18	-18	-18	-19	-20	-21	-19	-12	+1	+22	+47	$+56$	+ +9	$+3^{8}$	+19	+3	-5	-6	-7	-1s	-13	-15	-16	-17	-16
December	-20	-20	-20	-20	-18	-19	-15	-4	+11	+24	+35	+44	$+{ }^{+2}$	+35	+26	+14	+1	-6	-11	-13	-16	-16	-86	-17	-13
Means	-24	-2+	-2+	-23	$-2+$	$-2+$	- ${ }^{+}$	-16	+2	+28	+55	+67	+63	$+46$	+2+	+6	-4	-8	-11	-15	-18	-20	-21	-22	-22
Summer.																									
April	-29	-31	-30	-29	-28	-29	-30	-15	+17	+52	+8+	+90	+79	+51	+18	-6	-12	-13	-14	-20	-23	-2+	-24	-24	-24
May	-26	-24	-22	-22	-23	-22	-16	-1	+21	+ +7	+59	+68	+5+	+33	+13	-3	-12	-14	-16	-16	-18	-19	-19	-20	-19
June	-20	-20	-21	-20	-19	-20	-16	-11	$+6$	+33	+ 56	+60	+ 54	+ 34	+18	+1	-9	-14	-16	-15	- 15	-15	-15	-16	-16
July	-16	-16	-18	-19	-20	-18	-16	-9	+4	+22	+ +0	+49	+5ı	+40	+22	+5	-9	-17	-14	-10	-11	-12	-11	-12	-12
August	-18	-19	-20	-21	-22	-20	-16	-12	+2	+23	+39	+54	+59	$+50$	+ 30	+10	-4	-14	-14	-14	-16	-17	-17	-17	-17
September	-30	-3I	-31	-31	-31	-30	-32	-29	+ 1	+ +	+76	+91	+86	+63	+31	+4	$-{ }^{1} 3$	-16	-14	-17	-20	-23	-24	-25	-25
Means	-24	-24	-24	-2+	-24	-24	-21	-13	+8	$+36$	+59	+68	+63	+45	+22	+1	-10	-15	-15	-16	-18	-19	-19	-19	-19

Hourly Means of Vertical Force in C. G. S. Units (corrected for temperature) at Kodaikanal from the selected quiet days in 1907.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	${ }^{11}$	Noon.	13	${ }^{1} 4$	15	16	${ }^{17}$	18	19	20	${ }^{21}$	22	23	Mid.	Means.
02000 C. G.S. + Winter.																										
Months.	$\boldsymbol{\gamma}$	γ	\boldsymbol{r}	γ	$\boldsymbol{\gamma}$	γ	\boldsymbol{r}	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	r	$\boldsymbol{\gamma}$	7	y	7	$\boldsymbol{\gamma}$	7	\boldsymbol{Y}	$\boldsymbol{\gamma}$	7	\boldsymbol{r}	7	\boldsymbol{r}	\boldsymbol{y}
January	.'.	\cdots	\ldots	\ldots	\cdots	...	\ldots	...	\cdots	\ldots	\cdots	...	\ldots	\cdots	\cdots	\cdots	\ldots									
February	\ldots	\cdots	\cdots	\cdots	...	\ldots	...	\ldots	...	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots	\ldots
March	\ldots	\cdots	'.	\ldots	...	\cdots	\ldots	...	\cdots	...	\cdots	...	\cdots	\cdots	\cdots	...	\ldots	\cdots	...	\cdots	...	\ldots	\ldots	...	\ldots	\ldots
October	274	275	275	275	274	275	278	275	270	260	245	239	240	242	249	257	260	26	268	${ }^{270}$	271	272	27.3	${ }^{275}$	275	265
November	289	289	289	289	289	289	289	289	290	290	284	282	278	272	275	275	276	277	280	282	282	283	284	285	285	283
December	295	291	291	290	289	289	290	289	289	288	297	286	280	277	277	281	281	292	$28+$	287	287	287	288	289	289	286
Means	${ }^{285}$	285	285	285	${ }^{28}+$	${ }^{28}+$	286	284	283	279	272	269	266	264	266	271	272	274	277	280	280	281	282	283	283	278

Diurnal Inequality of the Vertical siorce at Kodaikánal as deduced from the preceding Table.

Hourly Means of the Dip as determined at Kodaikánal from the solected quiet days in 1907.

Hours.	Mid.	1	2	3	4	5	6	1	8	9	10		Noon.	13	4	15	16	17	18	19	20	21	22	${ }^{23}$	Mid.	Means
Dip $3^{0}+\quad$ Winter.																										
Months.														,		,				,		,		,		,
January	\cdots	\ldots	\cdots		\ldots	\cdots	\ldots	\cdots	-	\cdots	\cdots	${ }^{\prime}$	\cdots	\cdots	\cdots									
February	\ldots	\cdots	...	\cdots	...	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	...	\ldots	\ldots	\cdots	\ldots						
March	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	...	\ldots	\ldots	\ldots	...	\ldots	\cdots	\cdots	...	\cdots	\cdots	**	\ldots	\cdots	\cdots	\cdots	...	\cdots
Octaber	28.7	28.8	28-8	28.8	28.7	28.8	29. I	28.8	28.2	${ }^{27} 1$	$25^{\prime} 5$	249	${ }^{2} \cdot 1$	25.4	26.2	270	27.3	277	28.1	28.3	28.4	28.5	28.6	28.8	28.8	27.7
November	30.0	300	$30^{\circ} 0$	30°	$30^{\circ} \mathrm{t}$	30.1	300	30°	30°	29.9	29.2	29.0	28.7	28.2	28.2	28.6	28.8	28.9	29.2	294	29.4	29.5	296	29.7	29.7	294
December	30.2	$30 \cdot 2$	$30^{\circ} 2$	30.1	30.0	30°	$30^{\circ} \mathrm{t}$	29'9	29.9	297	$29^{\prime} 5$	29.4	28.9	28.6	28.7	29.1	$29^{\prime 2}$	29.3	29.5	29:8	29.8	29.8	$29^{\circ} 9$	30\%	30.0	297
Means	\cdots	\ldots	\cdots	\cdots	\cdots		\cdots		\ldots	\ldots		\cdots		\cdots	. ${ }^{\prime}$

Diurnal Inequality of the Dip at Kodaikanal as deduced from the preceding Table.

Table G．

Abstract showing approximate magnetic values at stationsobserved at by No． 26 Party during season，1907－08．

		Surv		Latitude．	Longitude．	Dip．		Declination．	Horizontal Force．	Remaris．
．				－，＂	0 ．＂		，	－，	C．G．S．	
1135	Mōng Mā		3	224510	$98 \quad 16$ ro	$30 \quad 5$		E 052	03773	
1136	Mōng Yai		4	222530	$98 \quad 230$	$30 \quad 18$		＂ 053	$0 \cdot 378$	
1137	Möng Awt		5	$22 \quad 220$	982230	293	32	＂ 05 I	0.3799	
1138	Hsupwo ．	＂	6	214950	985020	29		＂ 049	0.3806	
1139	Mōng Ping	${ }^{288}$	1	21210	$99 \quad 10$	281	10	＂ 045	0.3823	
1140	Kēng Tung		2	21170	99370	28	2	＂ 045	$0 \cdot 3820$	
1141	Mōng Yāng		3	215040	994130	2910	10	＂ 041	$0 \cdot 3802$	
1142	Hsuplamhsuplwe		4	212340	1001420	$28 \quad 16$	16	＂ 044	0.3822	
1143	$\begin{aligned} & \text { Namlang }\left(P_{2-l i a o .)}\right. \end{aligned}$	${ }^{208}$	1	204950	1002050	27	7	＂ 047	0.3842	
1144	Möng Hai		2	2046 10	9948 10	$26 \quad 5$	59	＂ 045	$0 \cdot 3839$	
1145	Mōng Hsāt		3	203140	991550	26． 2		＂ 047	0.3845	
1146	Mōng Tung	\％ 80	1	2018 0	985410	$25 \quad 5$	58	\％ 045	0.3850	
1147	Möng Htā		2	19 51 10	9834 o		0	＂ 044	0.3860	
1148	Möng Pan	＂	3	201910	9822 ro	26	0	＂ 045	0.3845	E
1149	Mōng Nai	＂	4	203020	97520	$26 \quad 1$		，， 041	$0 \cdot 3843$	${ }_{5}$
1150	Kēng Tawng		5	204510	981810	$26 \quad 5$	51	＂ 045	0.3838	E
1151	Möng Pu	＂	6	205440	981430	$27 \quad 1$	15	＂ 048	0.3830	O
1152	Wàn Kawng		7	212320	982230	$28 \quad 1$	13	＂ 048	0.3820	0
1153	Wān Hoko		8	21010	$9757 \quad 0$	27	22	＂ 044	0.3829	0
1154	Wān Hohwe		9	3190	973140	27	39	， 046	$0 \cdot 3822$	$\stackrel{\square}{\text { I }}$
1155	Nawngla yaw		10	21 $3^{8} 20$	974430	28	3^{8}	＂ 047	0.3810	
1136	Mān Li		11	22550	97 31 30	29	3^{8}	＂ 048	$0 \cdot 3796$	
1157	Kyawkkn		17	214820	9656 ro	29	0	， 048	0.3805	
1158	Lawk Sawk		18	211440	$96 \quad 5230$	27	52	， 045	0.3817	
1159	Taunggyi	${ }_{\text {管 }}$	7	$20^{\circ} 4630$	$97 \quad 250$	26	53	＂ 049	$0 \cdot 3837$	
1160	Kalaw	98	10	203740	9634 10	26	33	＂ 045	$0 \cdot 3835$	
1161	Sillod	晏管	9	201840	$753^{8} 50$	25	21	＂ 011	$0 \cdot 3690$	
1162	Deulghát ．	＂		20320	76710	26	10	＂ 033	$0 \cdot 3647$	
1163	Mehkar ．．	＂		20910	763510	25	48	＂ 047	0.3656	
1164	Chikni	$7{ }^{7} 9$		2050	775330	25	6	＂ 051	0.3708	
1165	Boraghat ．	88		213140	843330	28	15	， 059	O＇3750	
1166	Bonaigarh	＂		21490	845730	28	54	＂ 025	$0 \cdot 3729$	
1167	Pál Lahara	\％${ }^{\text {\％}}$	6	212550	851130	27	51	， 031	－ 3739	
1168	Tálcher	89	7	205710	851430	27		＂ 05^{8}	0.3768	
1169	Kantolo	9 9i		21 720	853740	27	54	＂ 045	$0 \cdot 373$	
1170	Grutgaon ．	＂		212410	855320	27	52	， 052	$0 \cdot 3753$	
1171	Keonihar	＂		213740	853530	28	15	， 049	－ 3740	

Abstract showing approximate magnelic values at stations observed at by No. 26 Party during season, 1907-08.

Abstract showing approximate magnetic values at stations observed at by No. 26
Party during scason, 1907-08.

Repeat Stations.

	Name of Station	Survey	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force.	
ज̆							C. G. s.	
1	Udaipur		243533	734157	3349	E 1.24	${ }^{\circ} 3530$	
11	Karáchi		244950	$67 \quad 2 \quad 2$	$34 \begin{array}{ll}34\end{array}$, 1'40	- 3457	
111	Quetta -		301152	$67 \quad 020$	437	, 2.58	$0 \cdot 3232$	
IV	Baháwalpur		292327	714037	429	(, $2 \cdot 51$	$0 \cdot 3318$	
v	Ráwalpindi		333516	$73 \quad 36$	4818	" 3 * 42	0.3122	
V1	Bharatpur		271327	$77 \quad 2928$	$38 \quad 42$	" 159	$0 \cdot 3458$	
VII	Bangalore		125935	$7735{ }^{8}$	948	W 0.37	0.3811	
VIII	Dhárwár		152726	745935	$15 \quad 23$	" 0.13	${ }^{0} 3761$	㐌
IX	Porbandar		213820	69376	2845	E 1.13	$0 \cdot 3600$	인
X	Fyzabad .		264727	82740	3754	, 1×48	$0 \cdot 3529$	Σ
XI	Sambalpur		21283	83 5824	$27 \quad 52$	" 0.49	0.3725	E
XII	Waltair -		174257	83191	$21 \quad 12$	") 0.15	$0 \cdot 3785$	E
XIII	Darjeeling		265949	$88 \quad 1639$	$38 \quad 18$	-1.36	- 3570	\%
XIV	Gaya		244630	845854	3416	,' 1'9	- 3659	\%
XV	Seiunderabad		1727 I1	$78 \quad 2916$	20 11	" 0.18	$0 \cdot 3797$	$\underline{\square}$
XVI	Bhasával .		$21: 46$	754718	$26 \quad 59$, 0'50	$0 \cdot 3680$	
XVII	Jubbulpore		83857	795644	312	, 1/3	${ }^{\circ} \mathbf{3} 643$	
XVIII	Tavoy		14450	981230	$12 \quad 19$	" $0.3{ }^{1}$	$\bigcirc \cdot 3957$	
XIX	Lashio		225647	97444°	31 16	" 0.47	$0 \cdot 3762$	
XX	Akyab .		20753	925318	$25 \quad 29$	" 0.45	$0 \cdot 3838$	
XX1	Silchar or Cachar		244943	924721	3443	, 1'13	$\bigcirc \cdot 3692$	
XXII	Dibrugarh		272924	945540	3930	- r $\times 19$	$0 \cdot 3587$	

Nota - The above values of Dip, Declination, and Horizontal Force are uncorrected for secular change, diurnal rariation, instrumental differences, etc., and are to be considered preliminary values only.

The survey numbers refer to the published chart : thus No. 娄 3 denotes No. 3 station, the apherical co-ardinater of nhose centre are 36° North Latitude and 76° East Longitude

All Longitudea are relerable to that of Madras Observatory taken at the value $80^{\circ} 14^{\prime} 47^{\prime \prime}$ East from Greenwich.

Noles-The Longitudes are referrible to the Greenwich Meridian, taking that of the Madras Otiservatory as $80^{\circ} 14^{\prime} 64^{\prime \prime}$ Fast.

II.
 TIDAL AND LEVELLING operations.

Annual Narrative Report of Mr. C. F. Erskine, in charge No. 25 Party (Tidal and Levelling Operations). Season, 1907-08.

Imperial Officer.
Mr. C. F. Erskine.
Provincial Officers.
Messrs. J. P. Barker, H. G. Shaw, E. H.
Corridon, Munshi Syed Zille Hasnain, Babu P. N. Sur, A. M. Talati, O. N. Pushong and D. H. Luxa.

Subordinate Establishment.
t Surveyor, 23 Computers and Recorders, 2 Native Artificers, 3 Tidal Observatory Clerks.

TIDAL OPERATIONS.

2. Work of the year.-During the past year tidal registrations by self-registering tide-gauges, were taken at the ports of Aden, Karáchi, Apollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon and Port Blair. In addition, tide-pole readings of high and low water were taken during daylight at the ports of Bhávnagar, Akyab, Chittagong and Moulmein, with the object of comparing the actual times and heights with the predictions; the observations were made under the control of the Port Officers.

The reduction by harmonic analysis of the observations for 1907 of the 8 stations named above has been completed. The tide-tables for rgog have arrived in India and will be distributed in due course. The work of publication of tide-tables for 1910 is in progress in England. Data for the tide-tables for 1911 and 1912 were despatched to England in July 1908.

List of Tidal Stations.-The following table gives a list of the 4^{2} ports at which tidal observations have been registered, together with the periods of observations from 1874 when tidal operations were begun, up to the present time.

The permanent stations are shown in italics; the others are minor stations which were closed on the completion of the requisite observations.

Serial No.		Stations.		Automatic or personal observations.	Date of commence ment of observa. tions.	Date of closing of observa tions.	Number of years of observations.	Remaris.
1	Suez		-	Automatic	1897	1903	7	
2	Perim			Ditto	1898	1902	5	
3	Aden		-	Ditto	1879	Still working	28	
4	Masqãt			Ditto	1893	1899	5	
5	Büshire	. .		Ditto	1892	1901	8	

Serial N_{0}.	Stations.	Automatic or personal observations.	Date of commencement of observations.	Date of closing of observa. tions.	Number of years of observa. tions.	Remarks.
6.	Karáchi . .	Automatic	1881	Still working	27	
7	Hanstal . . .	Ditto	1874	1875	1	Tide-Tables
8	Nowanar	Ditto	1874	1875	I	$\} \begin{aligned} & \text { not pub- } \\ & \text { lished. }\end{aligned}$
9	Okha Point	Ditto	$\left\{\begin{array}{l}1874 \\ \mathrm{Re}- \\ \text { started } \\ 1904\end{array}\right.$	$\left.\begin{array}{c} 1875 \\ 1906 \end{array}\right\}$	$\}_{1}^{1}\right\} 2$	Year 1904-05 excluded.
10	Porbandar .	Personal	1893	1894	2	
10	Porbandar	Automatic	1898	1902	5	With certain interruptions
11	Port Albert Victor (Káthiáwár).	Personal	188!	1882	I	
$\frac{11}{\text { A }}$	Port Albert Victor (Káthiáwár).	Automatic	1900	1903	4	
12	Bhávnagar . .	Ditto	1889	1894	5	Tide pole readings taken.
13	$\begin{aligned} & \text { Bombay } \\ & \text { Bandar). (Apollo } \end{aligned}$	Ditto	1878	Still working.	30	
14	Bombay (Prince's Dock).	Ditto	1888	"	20	Property of Port Trust.
15	Mormugao (Goa)	Ditto	1884	1889	5	
16	Kârwár	Ditto	1878	${ }^{188} 3$	5	
17	Beypore .	Ditto	1878	1884	6	
18	Cochin . .	Ditto	1886	1892	6	
19	Tuticorin .	Ditto	1888	1893	5	
20	Minicoy .	Ditto	1891	${ }^{18} 86$	5	
21	Galle . . .	Ditto	- ${ }^{188} 8$	1890	6	
22	Colombo	Ditto	1884	1890	6	
23	Trincomalee	Ditto	- 1890	1896	6	
24	Pámban Pass . .	Ditto	1878	1882	4	
25	Negapatam . .	Ditto	1881	1888	6	Year ${ }^{1} 88_{4}-85$ is excluded.
26	Madras . . .	Ditto	$\left\{\begin{array}{l}1880 \\ \mathrm{Re}- \\ \text { started } \\ 1895\end{array}\right.$	($\left.\begin{array}{c}1890 \\ \text { Still } \\ \text { work- } \\ \text { ing. }\end{array}\right\}$	$\left.\begin{array}{l} 10 \\ 13 \end{array}\right\} 23$	
27	Cocanada	Ditto	- 1886	1891	5	

Serial No.	Stations.	Automatic or personal observations.	Date of commencement of observa. tions.	Date of closing of observations.	Number of years of observetions.	Remarks.
28	Vizagapatam . ,	Automatic	1879	1885	6	
29	False Point	Ditto	1881	1885	4	
30	Dublat (Saugor Island)	Ditto	1881	1886	5	
3 T	Diamond Harbour	Ditto	1881	1886	5	
32	Kidderpore	Ditto	1881	Still working.	27	
33	Chittagong	Ditto	1886	1891	5	Tide-pole readings
34	Akyab . . .	Ditto	1887	1892	5	Ditto.
35	Diamond Island	Ditto	1895	1899	5	
36	Bassein (Burma)	Ditto	1902	1903	2	
37	Elephant Point	Ditto	$\left\{\begin{array}{l}1880 \\ \mathrm{Re}- \\ \text { started } \\ 1884\end{array}\right.$	1881 1888	$\left.\}_{5}^{1}\right\}_{6}$	
38	Rangoon . .	Ditto	1880	Still working	28	
39	Amherst	Ditto	1880	1886	6	
40	Moulmein	Ditto	1880	1886	6	Tide-pole readings taken.
41	Mergui . . .	Ditto	1889	1894	5	
42	Port Blair .	Ditto	1880	Still working.	28	

4. Inspection of Observatories.-The eight tidal observatories now working were inspected during the year. Portable meteorological instruments were taken on the tours of inspection and compared with those working locally.
5. Working of Observatories.-The following account contains a detailed description of the working of the instruments and other incidental information pertaining to the observatories. It has been taken from reports of inspecting officers, from information furnished by port oficers and from the registrations themselves.
6. Aden.-This observatory was inspected by Mr. C.F. Erskine, officer in charge of the Tidal party, in January 1go8. During the past year, there have heen a few short interruptions in the tidal registrations, due either to the pencil failing to mark, or to the driving clock stopping. The auxiliary instruments have worked well during the year.
7. Karachi.-This ubservatory, which had been wrecked in the cyclone of 6th June 1907, was re-started by Mr. H G. Shaw on 12 th October 1907, since when the driving clock of the tide-gauge stopped for a few hours on two
occasions, otherwise the tide-gauge has worked well. The small self-registering anemometer has frequently been out of order. No breaks have occurred in the records of the other auxiliary instruments.
8. Apollo Bandar (Bombay).-This observatory was inspected by Mr. Erskine in December 1907. There were two breaks of some hours in the tidal curves, one in October and one in December 1907, when, in each case from some cause unknown, the float-band came off the stud-wheel and fell into the cylinder.
9. Prince's Dock (Bombay).-This observatory was inspected by Mr. Erskine in December 1907, on account of the driving clock of tide-gauge stopping; there were six unimportant interruptions of the registrations of the tidegauge.
10. Madras.-This observatory was inspected by Mr. Erskine in January 1908. There has been no break during the past year in the registrations of the tide-gauge and auxiliary instruments,
11. Kilderpore.-This observatory was inspected by Mr. Shaw in January 1908. There were a few short interruptions in the tidal registrations due either to faulty communication between the cylinder and river, or breaking of cord of counterpoise weight of traveller pencil.
12. Rangoon.-This observatory was inspected by Mr. Shaw in January 1908. The registrations of the tide-gauge are complete. The self-registering anemometer was out of order from 8th to. 1 oth October 1907. The clock of the self-registering aneroid stopped for a few hours on one occasion.
13. Port Blair.-This observatory was inspected by Mr. Shaw in January 1908. During the past year, the interruptions in the tidal curves were few and unimportant; they were due to the driving clock stopping. The self-registering anemometer was frequently out of order. The self-registering aneroid worked well.
14. Proposed Tidal Observatory at Moulmein.-The tidal observatory cabin at Moulmein was erected in August; 1908. The tide-gauge and other instruments will be installed before the end of the year and registrations will be commenced from ist January 1gog. Moulmein will then become a;permanent tidal station.
15. Tidal diagrams and Daily Reports.-The Tidal, Aneroid and Anemometer diagrams, and daily reports have been submitted regularly to the office at Debra Dún.
16. Tidal Constants.-The Tidal Observations for a year at 8 stations have been reduced and the tabulated values of the tidal constants thus derived are appended. There are no arrears.

Valubs of the Tidal Constants, Aden, 1907.

The following are the amplitudes (R) and epochs (ξ) deduced from the 1907 Observations at Aden; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1907 Observations:

Short Period Tides.

Short Period Tides-contd.

Values of the Tidal Constants, Karachi igo6-o 7.
The following are the amplitudes (R) and epochs (ζ) deduced from the -rgo6-07 Observations at, Karáchi; and also the mban values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1906-07 Observations:-

Short Period Tides.

Short Period Tides-contd.

		$\begin{array}{r} \nu_{2}\left\{\begin{array}{l} \mathrm{R} \\ \zeta \\ \mathrm{H} \\ \kappa \end{array}\right. \\ \mu_{2}\left\{\begin{array}{l} \mathrm{R} \\ \zeta \\ \mathrm{H} \\ \kappa \end{array}\right. \\ \mathrm{R}_{2}\left\{\begin{array}{c} \mathrm{R} \\ \zeta \\ \mathrm{H} \\ \mathrm{~K} \end{array}\right. \end{array}$	$\begin{array}{r} .078 \\ 289^{\circ} \cdot 73 \\ .076 \\ 325^{0.81} \\ .083 \\ 119^{\circ} .90 \\ .080 \\ 274^{0.62} \\ \ldots \\ \ldots \\ \ldots \\ \ldots \end{array}$		
Long Period Tides.					
		R	ζ	H	κ
Lunar Monthly Tide	. . .	-018	${ }^{15} 2^{\circ} 57$	-017	$32^{\circ} \cdot 20$
(1) Fortnightly 025	$190^{\circ} 34$	${ }^{\circ} \mathrm{O}{ }^{1}$	$37^{\circ} \cdot 25$
Luni-Solar ,		-035	$96^{\circ} 7^{8}$	-034	$199^{\circ} 42$
Solar-Annual	. - •	${ }^{1} 43$	$8^{\circ} .09$	143	$72^{0.04}$
", Semi-Annual		117	$57^{\circ} 80$	117	$185^{\circ} .69$

Values of the Tidal Constants, Bombay, 1907.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1907 Observations at Bombay (Apollo Bandar) ; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1907 Observations:-

Short Period Tides.

Long Period Tides.

Values of the Tidal Constants, Bombay, (Prince's Dock) 1907.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1907 Observations at Bombay (Prince's Dock) ; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1907 Observations.

Short Period Tides.

$A_{0}=8.247$ feet.				
				.239
$S_{1}\left\{\begin{array}{l} \kappa=\zeta=1 \\ 195^{\circ} \cdot 24 \end{array}\right.$		$Q_{1}\left\{\zeta=140^{\circ} 47\right.$	$\mathrm{T}_{8}\left\{\begin{array}{l}\mathrm{H}\end{array}\right.$	$14^{0.74}$
$\text { S. }\left\{H=R=\begin{array}{r} 9 \cdot 605 \end{array}\right.$	$\mathrm{M}_{6}\left\{\begin{array}{l}\mathrm{H}= \\ 010 \\ 0\end{array}\right.$	$Q_{1}\left\{\begin{array}{l}H=\quad 169\end{array}\right.$	T $\left\{\begin{array}{l}\text { H }\end{array}\right.$	$\cdot{ }^{-239}$
$\mathrm{S}_{\mathbf{2}}\left\{\begin{array}{l}\kappa=\zeta \\ \kappa=\end{array}\right.$	($\kappa=191^{\circ}{ }^{\circ} 96$	$\mu=60^{\circ} \cdot 74$		$\begin{array}{r}160.29 \\ \hline .126\end{array}$
	$\left\{\begin{array}{l} \mathrm{R}=0.006 \\ 4= \\ 282^{\circ} 001 \end{array}\right.$	$\mathrm{R}=\begin{array}{r}132 \\ 320.61\end{array}$		926 86
$S_{4}\left\{\begin{array}{l} \kappa=\zeta=192^{\circ} \cdot 3^{\circ} \end{array}\right.$	$M_{\theta}\left\{\begin{array}{l} \zeta \\ \zeta \end{array}=282^{\circ} \cdot 01\right.$	$\mathrm{L}_{2}\left\{\begin{array}{l} \zeta 22^{\circ} 61 \\ \mathrm{H} \end{array}\right.$	(MS) $\left\{\begin{array}{l}\text { R } \\ \zeta \\ H\end{array}\right.$	$86 \div 6$
	${ }^{\mathrm{M}_{8}}\{\mathrm{H}=\quad .006$	$\mathrm{L}_{2}\{\mathrm{H}=\quad \cdot 108$	(MS) $\left\{\begin{array}{l}\mathrm{H}= \\ \mathrm{c}=\end{array}\right.$	4
$\mathrm{S}_{6}\left\{\begin{array}{l}\kappa=\zeta \\ \mu=\mathrm{R}\end{array}=1{ }^{1} 70.73\right.$	$\mathrm{R}=1.628$	$320^{\circ} \cdot 5^{2}$		67
$\mathrm{S}_{8}\left\{\begin{array}{l}\mathrm{H}=\mathrm{R}= \\ \hline\end{array} \quad \begin{array}{r}002 \\ 50.62\end{array}\right.$	$\begin{array}{r}= \\ \hline 628 \\ \hline 0.51\end{array}$	($\mathrm{R}=\quad .995$	-	3
$\mathrm{S}_{8}\left\{\kappa=\zeta=55^{\circ} 62\right.$				-95
	$\begin{aligned} \mathrm{O}_{1}\left\{\begin{array}{r} \mathrm{H} \end{array}=\begin{array}{r} 666 \\ \kappa \end{array} 4^{8^{\circ} \cdot 44}\right. \end{aligned}$	$\mathrm{N}_{2}\{\mathrm{H}=\quad 079$	${ }_{2} \mathrm{SM}_{2}\{\mathrm{H}=$	042
			$\mathrm{R}=$	9
$M_{1}\left\{\begin{array}{l} \zeta=88^{\circ} \cdot 45 \\ \zeta=15 \end{array}\right.$	$K_{1}\left\{\begin{array}{l} \circ \\ \zeta=224^{\circ} 4^{\circ} \end{array}\right.$	$\left.\lambda_{2}\right\}$		9
$M_{1}\left\{\begin{array}{l} \zeta= \\ H= \\ 0.047 \end{array}\right.$	$\mathrm{K}_{1}\left\{\begin{array}{l} \zeta= \\ \mathrm{H}=\begin{array}{r} 224 \\ \hline \end{array} .305 \end{array}\right.$	$\lambda_{2} \begin{cases}\zeta & \ldots \\ \mathrm{H}= & \ldots\end{cases}$	$2 \mathrm{~N}_{3}\left\{\begin{array}{l} \}= \\ \mathrm{H}= \end{array}\right.$.088
$\left(\begin{array}{l} \kappa=63^{\circ} \cdot 42 \end{array}\right.$	$\left\{\begin{array}{l}k=45^{\circ} 7^{\circ}\end{array}\right.$	$\left(\begin{array}{l} k= \\ k= \end{array} \cdots\right.$	$\left(\begin{array}{l} k= \\ n= \end{array}\right.$	$73^{0.78}$
$r_{2}^{R}=\quad 4156$	$R=-380$	$r_{\mathrm{R}}^{\mathrm{R}}=\quad \because 47$	$\mathrm{r}_{\mathrm{n}}^{\mathrm{R}}$.015
$\mathrm{M}_{8}\left\{\begin{array}{l}\text { ¢ } \\ \zeta\end{array}\right.$	$\mathrm{K}_{9}\left\{\begin{array}{l} \zeta=176^{\circ} 43 \end{array}\right.$	$v_{2}\left\{\begin{array}{l} \zeta=23^{\circ} .87 \\ \zeta \end{array}\right.$	$\left(\mathrm{M}_{8} \mathrm{~N}\right)_{4}\left\{\begin{array}{l} \zeta= \\ \mathrm{H}= \end{array}\right.$	$278^{\circ} \cdot 25$
$\mathrm{M}_{3}\left\{\begin{array}{r}\mathrm{H}= \\ 4.093 \\ 331^{0.70}\end{array}\right.$		$v_{2}\left\{\begin{array}{l} 3 \\ H=0.047 \end{array}\right.$	$\left.\int^{\left(\mathrm{M}_{2} \mathrm{~N}\right)_{4}}\right\} \mathrm{H}=$	
$C_{\kappa}=331^{c} 70$	$\kappa=359^{\circ} \cdot 28$	$\left(\kappa=2^{\circ} \cdot 40\right.$		$333{ }^{\circ} \cdot 59$
$\left(\begin{array}{l} \mathrm{R}= \\ 0 \end{array}\right.$	$\left(\begin{array}{l} \mathrm{R}=4 \\ y \end{array}\right.$	$\left(\begin{array}{l} \mathrm{R}=208 \\ y \end{array}\right.$	$\left(\begin{array}{l} \mathrm{R} \end{array}\right.$	-018
$M_{3}\left\{\begin{array}{r} \zeta= \\ H=274^{\circ} .59 \\ 068 \end{array}\right.$	$P_{1}\left\{\begin{array}{l} \zeta=235^{\circ} .17 \\ H=17 \end{array}\right.$	$\mu_{\mathrm{g}}\left\{\begin{array}{l} \zeta_{\mathrm{H}}=43^{0.8} 8_{4} \\ \mathrm{H}=20 \mathrm{I} \end{array}\right.$	$\left(M_{9} K_{1}\right)_{0}\left\{\begin{array}{l} \zeta= \\ H= \end{array}\right.$	$21^{\circ} 3.30$
$\mathrm{M}_{3}\left\{\begin{array}{c} \mathrm{H}= \\ \kappa= \\ \mathrm{N}=068 \\ 31^{\circ} \cdot 58 \end{array}\right.$	$\left\{\begin{array}{l} \mathrm{H}=419 \\ \kappa=45^{\circ} \cdot 38 \end{array}\right.$	$\mu_{9}\left\{\begin{array}{r} \mathrm{H}=\begin{array}{r} 20 \mathrm{I} \\ \kappa \\ \kappa \end{array}=310^{\circ} \cdot 8.8 \end{array}\right.$	$\left.\right\|^{\left(M_{2} K_{1}\right)_{4}}\{\vec{H}=$	$\begin{array}{r} 0.18 \\ 260^{\circ} .52 \end{array}$
$\begin{array}{l\|r} \boldsymbol{\mu}= & 31^{\circ} \cdot 58 \\ \mathbf{R}= & \cdot 103 \end{array}$	$\begin{array}{l\|l} \kappa= & 45^{\circ} \cdot 3^{\circ} \\ \mathrm{R}= & 105 \end{array}$	$=319^{\circ} 8_{3}$	$=1$	$\begin{array}{r} 260^{\circ} \cdot 52 \\ \cdot 061 \end{array}$
$\left\{\begin{array}{l} R=r \\ \zeta=60^{\circ} \cdot 62 \end{array}\right.$	$J_{1}\left\{\begin{array}{rr}R= & \cdot 105 \\ \zeta= & 8^{0.17}\end{array}\right.$	$R_{0}\left\{\begin{array}{l} \mathrm{R}=\quad \cdots \\ \zeta=\quad \cdots \end{array}\right.$	$\left\{_ { 2 \mathrm { M } _ { 2 } \mathrm { K } _ { 1 }) _ { 3 } } \left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \end{array}\right.\right.$	$\begin{array}{r} .061 \\ 353^{\circ .85} \end{array}$
$\left\{\begin{array}{l}\text { H } \\ \mathrm{H}= \\ \hline 100\end{array}\right.$	$\mathrm{J}_{1} \begin{cases}\mathrm{H}= & \cdot 109\end{cases}$		$\left(2 M_{2} K_{1}\right)_{3}\left\{\begin{array}{l}\text { K } \\ \mathrm{H}=\end{array}\right.$	
($x=336^{\circ} 62$	($\kappa=1 \cdot 45^{\circ} \cdot 89$		($88^{\circ} 63$

Long Period Tides.

Values of the Tidal Constants, Madras, 1907.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1907 Ohservations at Madras; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1907 Observations.

Short Period Tides.

$\mathrm{A}^{0}=2.294$ feet.			
	$\mathrm{M}_{6}\left\{\begin{array}{r\|r} \mathrm{R}= & 0.004 \\ \zeta= & 21 \mathrm{I}^{\circ}{ }^{\circ} 83 \\ \mathrm{H}= & 0.004 \\ \kappa= & 87^{\circ} \cdot 3_{2} \end{array}\right.$	$Q_{1}\left\{\begin{array}{r\|r} \mathrm{R}= & 007 \\ \zeta & = \\ \mathrm{H} & 153^{0.81} \\ \cdot & 0007 \\ \kappa= & 74^{\circ} .88 \end{array}\right.$	

Short Period Tides-contd.

Long Period Tides.

					R	ζ	H	κ
Lunar Monthly	Tide	-	-	-	'039	$150^{\circ} .55$	-037	$10^{\circ} \cdot 94$
\because Fortnightly	"	.	.	.	-019	$186^{\text {c. } 62}$	$\cdot 022$	$42^{\circ} \cdot 22$
Luni-Solar ",	1	.			-016	$176^{\circ} \cdot 75$	-016	$218^{\circ} \cdot 25$
Solar-Annual	"	.	,	-	-293	$295{ }^{\circ} 55$	-293	$215^{\circ} \cdot 32$
, Semi-Annual	"	-	-	-	$\cdot 231$	$281{ }^{\circ} 9^{2}$	$\cdot 231$	$121^{\circ} \mathrm{C}$

Values of the Tidal Constants, Kidderpore, 1907.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1907 Observations at Kidderpore; and also the mean values of the amplftudes (H) and of the epochs (κ) for each particular tide evaluated from the 1907 Observations.

Short Period Tides.

Short Pcriod Tides-contd.

Values of the Tidal Constants, Rangoon, 1907.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1907 Observations at Rangoon; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1907 Observations.

Short Period Tides.

Values of the Tidal Constants, Port Blair, 1907.

The following are the ampiitudes (R) and epochs (ζ) deduced from the 1907 Observations at Port Blair ; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1907 Observations.

Short Period Tides.

Long Period Tides.

17. Other Computations.-The actual times and heights of high and low water for 1907 at 12 ports have been compared with the predicted values published in the tide-tables and the results tabulated.
18. Auxiliary Reports.-Reports on the operations carried on in the Bombay Presidency and in Burma were prepared and submitted, the former to the Government of Bornbay, and the latter to the Principal Port Officer in Burma, Rangoon.
19. Receipt and Issue of tide-tables.-The tide-tables for 1908 were received in the office in time for circulation and were duly distributed.
20. Datum of tide-tables.-The datum for the tide-tables is the datum of soundings in the most recent Admiralty Charts, with the exception of Bassein, the datum for which port is "Indian Spring Low Water Mark" which has not been connected with the Admiralty datum.
21. Sale of tide-tables.-The amount realised on the sale of tide-tables during the year ending $3^{\text {oth }}$ September 1908 is R1,671-11-6.
22. Data forwarded to England.-The following data were supplied to the Tidal Assistant, National Physical Laboratory, Teddington, England :-
(i) Values of the tidal constants for the tide-tables for 1910, 1911, and 19 i 2 ready for use in the tide predicting machine.
(ii) Actual values during 1906 of every high and low water measured in duplicate from the tidal diagrams at 9 stations, and of tide-pole observations taken during daylight at 4 closed stations, the latter under the supervision of the Port Officers, and supplied by them to this office.
(iii) Comparisons of the above with predicted values for 1908, the errors being tabulated in such form as to be of aid in improving the predictions.
23. Errors in Predictions.-The 5 tabular statements which are appended, show the percentage and amount of errors in the predicted times and heights of high and low water for the year 1907 at 12 stations, as determined by comparisons of the predictions given in the tide-tables with actual values measured from the tidal diagrams at 8 stations, and from tide-poles at 4 stations; the former are made in this office, and the latter by the Port Officials.

No. 1.
Statement showing the percentage and the amount of the errors in the Predicted Times of High Water at the various Tidal Stations for the year 1907.

Stations.	Automatic or Tidepole observa- tions.	Number of comparisons between actual and predicted values.	Ertors of 5 minutes and under.	Errors over 5 minutes 15 minutes. 5 minutes.	Etrors over 15 minutes 20 minutes.	Errors over 20 minutes and under 30 minutcs.	Errors ove 30 minutes
			Per Cent.	Fer Cent.	Per Cent.	Per Cent.	Per Cent.
Aden	Auto.	689	37	44	8	8	3
Karáchi. . . .	Auto.	447	47	39	6	6	2
Bhávnagar . .	T. P.	365	53	46	I
Bombay $\left\{\begin{array}{l}\text { Apollo Bandar } \text {. }\end{array}\right.$	Auto.	704	47	39	6	5	3
\{ Prince's Dock	Auto.	696	31	48	12	8	1
Madras	Auto.	705	39	44	11	5	1
Kidderpore	Auto.	705	17	31	12	${ }^{2}$	17
Chittagong	T. P.	365	25	36	14	13	12
Akyab	T. P.	337	99	1	\cdots	...	\cdots
Rangoon	Auto.	702	29	38	12	15	6
Moulmein	T. P.	365	6	77	14	3	...
Port Blair	Auto.	703	39	48	7	5	1

No. 2.
Statement showing the percentage and the amount of the errors in the Predicted Times of Low Water at the various Tidal Stations for the year 1907.

Stations.	Automatic or Tidepole observations.	Number of comparisons between actual and predicted values.	Ertors of 5 minutes and under.	Errors over 5 midutes and under 15 minutes.	Errors over and under 20 minutes.	Errors over 20 minutes and under 30 minutes.	Errors over 30 minutes.
			Per Cent.	Per Cent.	Per Cent.	Per Cent.	Per Cent
Aden . - .	Auto.	685	33	44	12	9	2
Karáchi.	Auto.	446	28	46	11	13	2
Uhávnagar - .	T. P.	365	56	42	2	.-	..
Bombay $\begin{aligned} & \text { Apollo Bandar. }\end{aligned}$	Auto.	702	44	45	6	, 4	1
Bombay \{ Prince's Dock .	Aulo.	6.96	41	47	7	3	2
Madras	Auto.	705	38	47	8	5	2
Kidderpore	Auto.	702	13	22	11	22	; 32
Chittagong - .	T. P.	365	27	26	14	15	18
Akyab .	T. P.	340	98	1	'.	...	1
Rangoon	Auto.	704	25	33	12	18	12
Moulmein	T. P.	3^{065}	6	70	18	6	...
Port Blair . .	Auto.	702	45	40	9	5	1

No. 3.
$S_{\text {tatement showing the percentage and the amount of the errors in the Predicted Heights }}$ of High Water at the various Tidal Stations for the year 1907.

Stations. ${ }^{\text {A }}$	Automatic or Tidepole observations.	Number of comparisons between actual and predicted values.	Mean range at springs in reet.	Errors of 4 inches and under.	Errors over 4 inches and under 8 inches.	Errors over 8 inches and under 12 inches.	Eriore over 12 inches.
				Per Cent.	Per Cent.	Per Cent.	Per Cent.
Aden	Auto.	689	67	97	3	.	\cdots
Karáchi . .	Auto.	447	$9{ }^{\circ} 3$	73	25	2	.'.
Bhávnagar . .	T. P.	365	31.4	47	35	14	4
A pollo Bandar .	Auto.	704	139	71	25	4	...
Bombay ${ }^{\text {Prince's Dock } .}$	Auto.	696	139	70	24	6	\cdots
Madras . . .	Auto.	705	$3 \cdot 5$	87	13	**	**
Kidderpore . . .	- Auto.	705	117	42	31	15	12
Chittagong . .	- T. P.	365	13.3	41	23	12	24
Akyab . . .	- T. P.	337	$8 \cdot 3$	84	16	\cdots	\cdots
Rangoon . .	- Auto.	702	16.4	51	31	13	5
Moulmein	T. P.	365	127	24	25	21	30
Port Blair . . .	- Auro.	703	66	94	6	'"	..'

No. 4.
Statement shoting the percentage and the amount of the errors in the Predicted Heights of Low Water at the various Tidal Stations for the year 1907.

Stations.		Number of comparisons between actual and pres. values	$\begin{gathered} \text { Mean } \\ \text { range at } \\ \text { springs in } \\ \text { feet. } \end{gathered}$	Errors of 4 inches and under.	Errors over 4 inches 8 inches.	Frrors over and under 11 inches.	Errors over
				Per Cent.	Per Cent.	Per Cent.	Per Cent.
Aden . . .	Auto.	68_{5}	$6 \cdot 7$	98	2	."	...
Karáchi . -	Auto.	446	93	86	14	'.]	...
Bhánnagar - .	T. P.	365	314	62	33	4	!
A Apollo Bandar.	Auto.	702	13.9	73	22	4	1
Bombay \{ Prince's Dock .	Auto.	696	139	70	24	5	I
Madras	Auto.	705	$3 \cdot 5$	91	9
Kidderpore . -	Auto.	702	117	35	27	16	22
Chittagong	T. P.	365	133	44	31	18	7
Akyab . . .	T. P.	340	$8 \cdot 3$	86	13	1	'0]
Rangoon - .	Auto.	704	16.4	30	27	20	23
Moulmein . .	T. P.	365	127	37	29	19	15
Port Blair . . .	Auto.	702	6.6	99	1	"'	"'

No. 5 .
Table of average Errors in the Predicted Times and Heights of High and Low Water at the several Tidal Stations for the year 1907.

Stations.	Automatic or Tide-pole observations.	Mean range at spring; in Ieet.	Average Errors.					
			Of Time in Minutes.		Of Height in terms of the range.		Of Height in inches.	
Open Coast.			H. W.	L. W.	H. W.	L. W.	H. W	L. W.
Aden	Auto.	67	10	11	${ }^{\circ} \mathrm{O} 2$	-012	1	1
Karáchi • • •	Anto.	$9 \cdot 3$	8	12	$\cdot 027$	$\cdot 18$	3	2
Bhávnagar	T. P.	31.4	6	6	${ }^{-13}$	-11	5	4
Apollo Bandar	Auto.	139	8	8	-018	-018	3	3
Bombay \{ Prince's Dock	Auto.	13'9	10	8	-018	-018	3	3
Madras	Auto.	$3 \cdot 5$	9	9	. 048	- 048	2	2
Akyab - .	T. P.	$8 \cdot 3$	2	2	${ }^{\circ} \mathrm{O} 30$	-030	3	2
Port Blair	Autu.	6.6	9	8	-295	${ }^{-25}$	2	2
Gberral Mrin	- -		8	8	-024	-021	$2 \cdot 8$	2.4
Rivarain.								
Kidderpore . .	Auto.	117	18	25	. 050	${ }^{\circ} \mathrm{5} 7$	7	8
Chittagong -	T. P.	133	15	19	${ }^{\circ} \mathrm{O} 0$	'038	8	6
Rangoon - .	Auto.	16.	13	15	'025	${ }^{\circ} \mathrm{O} 1 \mathrm{I}$	5	8
Moulmein . - . .	T. P.	12.7	12	13	'059	-046	9	7
Gingral Mban	- -	- . .	15	18	$\cdot 046$	${ }^{0} 046$	72	7.2

The foregoing statement for the year 1907 may be thus summarised :Percentage of time predictions within 55 minutes of accuals.

$\begin{gathered} \text { Open Coast } \\ \text { Stations. }\{ \end{gathered}$	6 at which predictions were tested by S. R. Tide-gauge				(High $\begin{gathered}\text { Wath } \\ \text { Ser } \\ \text { Cer } \\ \text { cent. }\end{gathered}$	$\xrightarrow{\text { L.ow }}$ Water
					84	83
	$2 \quad 1$,		Tide-pole	100	99
$\underset{\text { Stations. }}{\text { Riverain }}\{$	$2 \quad 1$	"	"	S. R. Tide-gauge	58	47
	"	"	"	Tide-pole	72	64

Percentage of height predictions within 8 inches of actuals.

$\begin{gathered} \text { Open Coast } \\ \text { Stations. } \end{gathered}$	6 at which predictions were tested by S. R. Tide.gauge				High Water Per cent.	$\begin{gathered} \text { Low } \\ \text { Water } \\ \text { Per } \\ \text { cent. } \end{gathered}$
					98	98
	2 "	"	"	Tide-pole	91	97
$\begin{aligned} & \text { Riverain } \\ & \text { Stations. } \end{aligned}\{$	$2 \quad 1$	"	"	S. R. Tide-gauge	78	60
				Tide-pole	57	71

					cing $\begin{gathered}\text { Highter } \\ \text { Per } \\ \text { Per } \\ \text { cent. }\end{gathered}$	(${ }_{\text {L }}^{\text {Low }}$ Water
Open Coast Stations.	6 at which predictions were tested by S. R. Tide-gauge				98	99
	"	"	"	Tide-pole	100	100
$\underset{\text { Stations. }}{\text { Riverain }}\{$	2 "	"	"	S. R. Tide-gauge	96	90
	2 "			Tide-pole	84	96

24. Comparisons of the predictions at Riverain Stations.-The predictions for the riverain stations for the year 1907, were compared with those for the year before with the following results :-

At Kidderpore they are about the same for high water times, but worse for low water times. For the high water heights they are better, but for the low water heights they are worse. At Chittagong they are about the same for high and low water times, they are worse for high water heights, and about the same for low water heights. At Rangoon they are practically the same for both times and heights of high and low water. At Moulmein there is practically no change.

At Kidderpore the greatest difference between the actual and predicted heights of low water for 1907 was 2 feet 7 inches on 19 th and 20th September, the actual being lower than the predicted. At Chittagong it was 1 foot 8 inches, on 19th May, the actual being higher. At Rangoon it was 2 feet 9 inches, on 1 ath July, the actual being lower. At Moulmein it was a feet, on iath July, the actual being lower.

LEVELLING OPERATIONS.

25. Strength of Levelling Section.-During the past year three detachments were engaged on spirit levelling.

The combined strength of the levelling detachments in the field was as detailed below :-

Detachment No. I.-Two levellers: Mr. E. H. Corridon, ist leveller; Mr. O. N. Pushong, and leveller; 3 recorders; 30 menials.

Detachment No. 2.-Same strength as for detachment No. 1. The levellers were Munshi Syed Zille Hasnain, ist leveller; Mr. D. H. Luxa, and leveller.

Detachmert No. 3.-Equivalent strength to the other detachments the levellers being : Mr. A. M. Talati, ist leveller ; Babu P. N. Sur, and leveller.

In each instance the ist leveller had charge of the detachment.
At the close of field operations, the menial establishment was discharged, all but a few men who were required for service in recess.
26. Programme for past field season.-The following programme of work was allotted to the levelling detachments :-

Detachment No. 1-
(i) The revision of the portion of the old line of levels executed in season 1880-8I, between Guntakal and Madras.
(ii) The connection of the standard bench-marks, en route, at Cuddapah and Madras.

Detachment No. 2-

(i) To connect the stardard bench-marks at Multán, and Dera Ismail Khan with the old line of levels.
(ii) To execute a main line of levels from Ferozepore, along the railway line across Rajputana to Ahmedabad, with the object of breaking the large circuit Karáchi-Ferozepore-Sironj and Bombay, and the connection of a standard bench-mark at Bikaner.

Detachment No. 3-

(i) Revisionary levelling from Kosgi to Guntakal (of the Bombay. Madras line).
(ii) Revisionary levelling from Guntakal to Kárwár.
(iii) Connection of standard bench-marks at Ráichur and Bellary.

This programme was subsequently modified and the portion Guntakal to Bellary omitted, so as to ensure the work being closed at Kárwár by the end of the field season.

27. Duration of Field Season and work performed.

No. I Detachment.-This Detachment left Dehra for Guntakal on isth October 1907 arriving at its destination on 17 th idem. After preliminary arrangements were completed, work was started on 21st October, three benchmarks being cut in Guntakal for connection by No. 3 Detachment, who were revising the length between Kosgi and Guntakal. On 19th January 1908, when the Detachment had reached Kódúru, instructions were received to proceed at once to Madras and commence work from the Madras end of the portion then left to be revised, as there was every likelihood of the tidd observatory at Madras being soon cut off from the northern arm of the harbour
owing to the progress of the Madras Harbour Improvement scheme. The Detachment left Kódúru on 23rd January arriving at Madras the same evening. The levelling from the tidal observatory commenced on the 26 th January. After levelling from the bed-plate of the self-registering tide-gauge to a bench-mark cut on the wall of the goods-yard at Rayaparam Station, the connection of the standard bench-mark at the astronomical observatory in College Road was taken up, the opportunity being seized to re-connect as many as possible of the old bench-marks in Madras. Work was then resumed on the main line, Kódúru eventually being reached on 4th April. Next day the Detachment left for Dehra Dún reporting at Head-quarters on $13^{\text {th }}$ April.

No. 2 Detachment.-The Detachment left Dehra Dún for the field on the 12th October 1907. The connection of the standard bench-marks at Multán and Dera Ismail Khan was first taken in hand; on completion of this work the detachment moved to Ferozepore to commence the main line of levels from there to Ahmedabad. Before commencing work on the new line, it was considered necessary to verify the height of the old embedded benchmark at Ferozepore, from which the line was to emanate. The nearest old bench-mark found in existence was at Kasúr, 16 miles from Ferozepore, and the check levelling was carried out to this point. The levelling on the main line was then started, and was carried along the railway line vid Bhatinda and Bikaner to Nágaur, in Jodhpur territory, where operations were closed for the season, and the detachment returned to recess quarters, reaching Dehra Dún on the 12 th of April 1908.

No. 3 Detachment.-This Detachment left Dehra Dún on 12th October 1907 for Ráichur. The connection of the standard bench-mark there was completed on $24^{\text {th }}$ October. The detachment then left for Kosgi, where work was resumed on 25th October, closing at Guntakal on 24th November. Work was again taken up from Bellary on 26th November and finally closed at Kárwár on 21st April 1908. The detachment then returned to recess quarters reaching Dehra Dún on ist May 1908.

28. Outturn.

No. I Detachment.-The outturn of work of this detachment amounted to 296 miles, inclusive of check-levelling, in the course of which the instrument was set up at 3,462 stations, the total rises and falls amounting to 5,208 feet. The heights of 2 standard, 22 embedded and 235 inscribed bench-marks were determined, 8 bench-marks of other departments were also cunnected, and 7 Great Trigonometrical stations in the vicinity of the line of levels visited and reported on.

No. 2 Detachment.-The outturn of work of this detachment amounted to 348.2 miles of levelling, in the course of which the instrument was set up at 3,842 stations, the rises and falls amounting to 4,217 leet, the heights of 3 standard, 33 embedded and 186 inscribed bench-marks were determined: in addition, 15 irrigation bench-marks and 3 G. T. Survey stations were connected. The opportunity was also taken to inspect 7 G. T. Survey stations in addition to those connected by levelling, during the field season.

No. 3 Detachment.-The outturn of work of this detachment amounted to 297 miles of levelling, in the course of which the instrument was set up at 4,700 stations, the total rises and falls being 17,117 feet. The heights of 2 standard, 7 old, and 8 new embedded, 156 old and 90 ner inscribed,

1 railway, and i irrigation bench-mark; were determined. Two principal and 3 secondary Great Trigonometrical Survey stations were inspected and reported on.

Total outturn.-The total outturn of the three detachments was 941 miles of levelling, in the course of which the instrument was set up at 12,094 stations. The bench-marks connected were 8 standard, 70 embedded, 667 inscribed, and 25 belonging to other departments. Three G. T. stations were connected, and 19 were inspected and reported on.
29. Bombay-Madras Error. -The old line of levels executed in seasons 1877.81 between Bombay and Madras had a closing error of 2.98 leet, Madras being higher than Bombay. The revised line $1906-08$, closed at Madras, with an error +0.607 foot. The distance levelled over is 806 miles, the error per mile being ooo8 foot, or about $1 \frac{1}{00}$ of an inch.

Thus about 2.37 feet of error has been eliminated during the operations.
The results of the Revision levelling operations season 1907.08 are shown in the following table:-

Distance Bombay.	Name of Bench-mark.	Height abrve M. S.L.at Bombay.		Diference between the ${ }^{2}$ (ii) values.$\left(\mathrm{ii}_{i}-(\mathrm{i}) .\right.$	Published values.
		Seasons 1906-ob. (i)	Seasons, $1880 \cdot 8 r^{\prime}$ (ii)		
472	G.T.S. D at Kosgi Railmay Station. B. M.	1237'921	12391957	+2.036	1238.10
489	G. T. S. at Ádóni Railway Station. B. M.	1361'875	$1364 \cdot 148$	+2.273	1362.24
516	$\begin{aligned} & \text { G. T.S. } \\ & \text { B. M. at Nancherla Railway Stn. } \end{aligned}$	1552.564	1554'530	+1.966	1552.57
524	$\begin{aligned} & \text { G. T. S. } \\ & \text { B. M. } \end{aligned}$	1411'433	1413.222	+1789	141124
540	$\begin{aligned} & \text { G. T. S. } \\ & \text { B. M. Gooty. } \end{aligned}$	1199.661	1201744	+2.083	119961
554	G. T. S. B at Ráyalcheruvu. B. M.	$94 \mathrm{r} \times 088$	943'109	+2.021	$940 \% 8$
587	G. T. S. G at Kondápuram. B. M.	718.782	720'921	+2:39	718.44
602	G. T. S. [. at Muddanúru. B. M.	617689	619'900	+2\%211	61737
611	G. T. S. \square at Yerraguntla. B. M.	$543 \cdot 835$	545*909	+2.074	54334
621	G. T. S. D at Kamalápuram. B. M.	453'322	455\%91	+2'369	$453 \cdot 10$
636	G.T. S. Bat Cuddapah. B. M.	$451.53{ }^{\text {d }}$	453660	+2'122	451.03
650	G. T. S. B at Vontimitta. B. M.	423*492	$425 \cdot 622$	12:30	172.96
661	G. T. S. $\mathrm{B}, \mathrm{~m} .$ at Nandalúru.	472'493	454799	+2:306	47215

NO. 25 PARTY (TIDAL AND LEVELLING OPERATIONS).

Distance from Bombay.	Name of Bench-mart.	Height above M. S. L. at Bombay.		Difference between the 2 values. (ii) - (i)	Published. values.
		Seasons tgotio8. (i)	Seasons 1980-8. (i)		
676		555.940	558'507	$+2.567$	555'79
688	G. T. S. at Kódúru. B. M.	639443	641717	+2.274	$638 \cdot 97$
705	G. T. S. B. M. at Mámandúru.	$568 \cdot 836$	571*100	+2.264	$568 \cdot 32$
714	G. T. S. \square at Rénigunta. B. M.	$365 \cdot 428$	367744	+2.316	364'95
728	G. T. S. B. M. at Puttúr.	491'740	493'933	+2193	491.12
738	G.T.S. at Nagari. B. M.	393'624	395*934	+2.310	393' 10
747	$\begin{aligned} & \text { G. T.S. } \\ & \text { B. M. at Tiruttani. } \end{aligned}$	281403	283.639	$+2 \times 236$	280'79
755	G. 'I.S. at Arkonam. B. M.	293*772	296.013	$+2.241$	$293 \cdot 15$
772	G. T. S. \square at Tiruvallúr. B. M.	152.473	154.77^{9}	+2'305	15199
785	G. T. S. \square at Avadi. B. M. .	$80 \cdot 439$	82'806	$+2 \cdot 367$	8001
796	G. T S. \square at Sembiam. B. M.	20212	22.764	+2.552	19.85
796	G. T. S. \square at Perambúr. B. M.	11239	13751	$+2.512$	10.88
799	Prince of Wales' Memorial Stone.	$16 \cdot 333$	$18 \cdot 688$	+2'355	15778
799	M. S. L. at Madras.	0.607	2976	+2.369	0.00

30. Bombay-Kárwár Error.-Owing to the large difference of a foot between the mean sea levels of Bombay and Kárwar, as derived by the old levelling, it was decided to revise the line of levels from Bellary to Kárwár.

The following list of heights exhibits the discrepancies between the old and new levelling on this line:-

Distance from Karwic.	Name of Bench-mart.	Height above M. S. L. at Karwar.		Difference between the 2 values. (i)-(ii)	Publisbed values.
		Seasons 1907-08, (i)	$\begin{gathered} \text { Seasons } \\ 18737+ \\ \text { (ii) } \end{gathered}$		
0	G. T. S. 口 at Kárwár. B. M.	15773	11.772	00000	1176
; 5	O at Rock, Aggúr.	66.948	$66 \cdot 858$	+0.090	66.85
47	O A Cruardstone (ArDail) $\text { B. } \mathbf{M} \text {. }$	$190 \cdot 360$. $180 \cdot 301$	+0.059	t80'19

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Distance } \\
\text { frome } \\
\text { Kirwar. }
\end{gathered}
\]} \& \multirow{2}{*}{Name of Bench-mark.} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Height above M. S. L. \\
at Kárwár.
\end{tabular}} \& \multirow[t]{2}{*}{Difference between the 2 values. (i)一(ii)} \& \multirow{2}{*}{Published values.} \\
\hline \& \& Seasons 1907-08. (I) \& \[
\begin{aligned}
\& \text { Seasons } \\
\& 1873.74 \\
\& \text { (ii) }
\end{aligned}
\] \& \& \\
\hline 60 \& \begin{tabular}{l}
G. T. S. at Guardstone (Yellápur). \\
B. M.
\end{tabular} \& 1788.851 \& 1788'121 \& +0'730 \& 1788.11 \\
\hline 103 \& \[
\begin{aligned}
\& \text { G. T. S. } \\
\& \text { B. M. }
\end{aligned} \text { at Hubli. }
\] \& 2060'665 \& 2059914 \& +0'751 \& 2059'90 \\
\hline 128 \& \begin{tabular}{l}
G.T.S. \\
B. M. at Pillar (Annígeri).

\end{tabular} \& 2054:323 \& 2053.535 \& $+0^{\circ} 788$ \& 2053 '52

\hline 166 \& B. M. at Stone (Hesarúr). \& 1640\%9 \& 1640.025 \& +0.886 \& 1640.01

\hline 198 \& B. M. at Embankment (Hospet). \& 1701780 \& 1701975 \& -0.195 \& 170196

\hline 240 \& | G. T. S. |
| :--- |
| B. M. |
| at Drain (Bellary). | \& 1481•776 \& 1481.023 \& +0'753 \& 148101

\hline
\end{tabular}

From above list it will be seen that a very large portion of the error, amounting to 8 irches, has been disclosed on the section Yellápur to Arbail, a distance of 13 miles. The ghats had to be crossed over between these two stations and as may be seen from the above table, the difference in height between Yellápur and Arbail is about 1,608 feet.

The closing error at Kárwár obtained by the old levelling on the lines Bombay, Kedgaon, Hubli and Kárwár was o'93 foot, Kárwár being higher than Bombay. Introducing the new values on this route, Kárwár mean sea level is now found to be 0.137 foot lower than Bombay mean sea level. The result is obtained thus:-

31. Difference between Levellers (First-Second).

Detachment No. 1 :-

Line Guntakal to Madras.

at 50th mile	.	-	.	.			. $=$	-0.082	foot.
, rooth "		-	-	.	-	.	=	-0.075	"
, I50th ,		.	.	-	-		. $=$	-0.103	"
,, 20oth "		-	-	.	.		. $=$	-0.088	"
" 250th "					.	-	$=$	-0.070	,
, 277th "		.	-		-		, $=$	-0.070	"

Detachment No. 3:-

Line Ferosepore to Nagaur.

at 50th mile	,	-	.	.	-	-	. $=$	-0.016	Oot,
"100th "	-	-	-	-	-	-	-=	-0.072	"
" ${ }^{150 t h ~,}$	-	.	-	,	-	-	. $=$	-0.08o	,
, 200th	-	-	-	-	-	-	- $=$	-0.062	"
:250th "	-	\cdots	-	,	,	-	. $=$	-0.059	"
,300th "		,	-	,			=	-0.008	"
, 325th	-	-						-0.037	

Detachment No. 3 :-

> Line Kosgi to Guntakal.
(50 miles) $=+0.052$ foot.
Line Bellary to Kíruár.

32. Levels and staves used in the field. -The levels employed by No. 1 Detachment on the line Guntakal to Madras were Cylindrical Level No. 4 used by Mr. Corridon, and Cylindrical Level No. i by Mr. Pushong.

The staves used on this portion were Nns. of, 03, 04 and o5 of Captain Cowie's pattern.

No. 2 Detachment used American binocular precise levels throughout their levelling from Ferozepore to Nágaur; Munshi Syed Zille Hasnain worked with Level No. 2697, and Mr. Luxa with Level No. 2626. The staves used on this Line were $: 6 \mathrm{~A}, 16 \mathrm{~B}, 20 \mathrm{~A}$ and 20 B , which have graduations on only one face. These staves were manufactured at the Mathematical Instrument Off.ce.

No. 3 Detachment used cylindrical levels throughout the season, on the line Kosgi to Guntakal and Bellary to Kárwár. Mr. Talati worked with No. 3, and Babu Sur with No. 2!

The staves employed on these lines were Nos. B $1, B_{2}$, IIII and 4, of the G. T. pattern.
33. Unit Correction for staves - During the actual progress of the work weekly comparisons of the staves with portable 10 foot standard steel bars were made, with the object of determining the correction for difference in unit of pairs of staves, to be applied to the observed heights in order to obtain the absolute heights.

Tables of these comparisons are appended.
No. i Levelling Detachment.
Results of comparison of staves-Season 1907-08.

Place and date of comparison.		Numbar of Stapf.				Remarks.
Guntakal, October 19th, 1907.		-'0000968	+.0015455	-'0038045	-.0047670	Cloudy
Pátakottacheruv	, " 27th ".	--0006347	+'0004990	-.0046923	-.0054125	Scattered clouds.
Gooty,	November 5th ".	-.0008356	+'0001974	--0052007	-0058959	"
Ráyalcheruvu,	" ilth "	--0003542	+'0010272	-.0044228	-.0048635	First Clear day.
Vanganúru,	" 20th ".	+'0000536	+'0017440	-.0035095	-'0042159	Passing clouds.
Mangapatnam,	" 28th \quad.	+'0003720	+'0017095	- ${ }^{\circ} 00335^{14}$	-.0034655	Clear, after rain.
Yerraguntla,	December 9th n	-'0004397	+0009013	-.0044580	-.0059176	Clear and dry.
Krmald́putam,	" 16th "	+0004346	+'0020154	-'0034439	-0035016	Cloudy after rain.

Results of comparison of slaves-Season 1907-08.

Place and date of comparison.		No. of Staff.				Remarks.
		04	05	01	03	
Cuddapah, December	25th 1907	+ 0006750	+0021875	-.0025920	-.0033747	Light scattered clouds.
Vontimitta, January	3 rd 1908	+ ${ }^{\circ} 0007240$	$+\cdot 0022865$	-.0026757	-.0031725	"
Pázampéta, "	12th 1 .	+6010171	+.0022187	--0023922	-.0027265	"
KÓdúru, "	21st ".	+'0005178	+.00206r4	-.0030806	-0035444	Clear.
Ráyapuram, "	3ist "	+.001496r	+ 0027881	-'0019994	-.0023728	"
Avadi, February	10th ".	+0011256	+'0023349	-'0024433	-0026808	"
Tiruvélangádu, "	2Ist " •	+'0008142	+.0021610	-.0026640	-'0029297	"
Tiruttani, March	2nd ".	+.0009255	$1 \cdot 0022114$	-.0026777	-.0031309	*
Puttúr, "	IIth ".	-.0002231	+'0013269	--0036856	-'0048013	"
Rénigunta, "	2ISt ".	+'0000275	+'0015166	-.0035193	-.0042895	$\begin{aligned} & \text { Dry } \\ & \text { clear. } \end{aligned}$
Setikunta, "	30th ".	+'000231I	-.0014872	-.0032378	-.0038910	Clear after cloudy weather.
Kadúru, April	5th ".	-*0005064	+'0007122	-'0043192	-.0052099	Dry and clear.

No. 2 Levelling Detachment.
Results of comparison of staves-Season 1907-08.

No. 3 Levellinf Detachment.
Results of comparison of staves-Season 1907-08.

34. Minor Lines of Levelling.-In addition to the levelling executed during the field season by the three levelling detachments, the following lines of levels were run by officers attached to the G. T. S. office :-
(i) A line of levels from Nojli (Shav's Station) to $\bar{\pi}$ on stone slab 25 feet north of Myapore canal bungalow, Hardwár. This line was levelled by Lieut. H. T. Morshead, R. E., between January 2oth and March 6th, 1908. The level used by him was American binocular precise level No. 2625.
The length of the line was 3^{8} miles, and it was levelled over, both in forward and back directions. The closing error at Hardwár is o.002 foot between the forward and back levelling.
(ii) A line of levels was run from G. T. S. bench-mark (iron plug) at the

bridge over the Jumna river, at the 49th mile from Saháranpur. The line was executed by Lieuts. A. H. Gwyn, I. A., J. A. Field, - R. E., and C. M. Thompson, I. A., in March and April. The levels used were Cooke's Cushing's level No. 8446 and American binocular precise level No. 2625 .
The length of the line was 3^{1} miles. The closing difference between the results obtained by the two levels at Kálsi was 00092 foot.

The total outturn of levelling during the past season, including these lines, with those completed by the three levelling detachments is $1,0: 0$ miles.

The following is a complete list of standard bench-marks as they stood at close of season 1907-08:-

Nos.	Completed and connected.	Completed not yet connected.	Completed and to be connect ed in 1908 -og.
5 6 7 8 9 10 11 12 13 14 15 16 19 18 19 20 21 22 20 23		in Sukkur, I in Hyderabad (Sind). in Karáchi. 1 in Mhow. I in Jacobabad.	I in Satára. I in Belgaum. 1 in Bangalore. 1 in Salem. 1 in Trichinopoly. I in Negapatam. I in Madura. 1 in Tinnevelly. 3 in Secunderabad. 1 in Jodhpur. 1 in Deesa. 1 in Ahmedabad. t in Saugor. I in Jubbulpore. ${ }_{1}$ in Nágpur. 1 in Akola. 1 in Hinganghát.

The following is a complete list of standard bench-marks as they stood at close of season 1907.08-continued.

Nos.	Completed and connected.	
26	I in Delhi.	
27	1 in Ambala.	
28	1 in Ludhiána.	
29	I is Ferozepore.	
30	I in Jhelum.	
31	1 in Attock.	
32	1 in Peshawar.	
33	1 in Deolali.	
34	I in Ahmednagar.	
35	1 in Kirkee.	
36	2 in Poona.	
37	1 in Sholápur.	
3^{8}	1 in Multán.	
39	1 in Dera Ismail Khan.	
40	I in Ráichur.	
41	I in Bellary.	
42	I in Cuddapah.	
43	1 in Madras (new).	
44	I in Bikaner.	
Nos.	Under construction.	P roposed for erection.
* 1	1 in Calicut.	1 in Rangoon.
2	1 in Roorke.	1 in Toungoo.
3	1 in Surat.	1 in Mandaiay,
${ }^{4} 4$	1 in Bilaspur.	: in Shewbo.
*5	1 in Raipur.	1 in Meiktila.
* 6	1 in Sambalpur.	1 in Magwe.
7	1 in Godhra.	1 in Wuntho.
8	1 in Thulia.	1 in Balasore.
*9	(1) in Bijápur.	I in Cutack.
10	I in Khanpur.	1 in Berhampur.

[^2]| Nos. | Under construction. | Proposed for erection. |
| :---: | :---: | :---: |
| 11 | 1 in Baháwalpur. | 1 in Vizagapatam. |
| 12 | I in Minchinabad. | 1 in Cocanada. |
| 13 | 1 in Baroda. | I iiti Bezwada. |
| 14 | I in Rajkot. | 1 in Nellore. |
| 15 | 1 in Mussooree. | 1 in Champáran. |
| | | in Muzaffarpur. I in Patna. |
| | | 1 in Bhágalpur. |
| | | 1 in Nalháti. |
| | | 1 in Rurdwan. |
| | | I in Gauháti. |
| | | 1 in Dhubri. |
| | | 1 in Purnea. |
| | | 1 in Dinajpur. |
| | | 1 in Mymensingh. |
| | | 1 in Dacca. |
| | | 1 in Comilla. |
| | | I in Chittagong. |

35. Standard bench-marks.-During the past year 32 standard benchmarks were prected and 13 connected, fifteen are under construction, and 28 have been proposed for erection.
36. Destruction of bench-marks.-During the past year 265 bench-marks were reported as lost. On the line Bellary to Kárwár no less than 86 out of a total of 223 bench-marks, were reported missing by the levelling officer. On the line Guntakal to Madras, 53 out of 218 were reported by the levelling officer as destroyed.
37. Recess duties.-The levelling computations nave been completed. Manuscript pamphlets of heights have been brought up to date.
38. Tables.-Tabular statements relating to the past season's operations are appended.
39. Health of Field Party. - The health of the men of No. : Detachment was very good. The officer in charge No. 2 Detachment reported the health of his party as gcod, except in the case of a recorder who died of pneumonia early in the field season. The health of the men of No. 3 Detachment was reported as generally bad, owing to malaria.
40. Programme for Field Season rgo8-og.-The levelling operations to be performed during the coming field season are:-

No. i Levelling Detachment will be employed in connecting the standard bench-marks at Sátára, Belgaum, Bijápur, Bangalore, Salem, Calicut, Trichinopoly, Negapatain, Madura, Tinnevelly and 3 in Secunderabad with adjacent
lines of levels, and then on the Katni-Secunderabad line of levelling commencing from Secunderabad.

No. 2 Levelling Detachment will be employed in completing the Feroze-pore-Ahmedabad line of levels, in running a short line of levels from Pálanpur to Deesa, and in connecting the standard bench-marks at Jodhpur, Deesa and Ahmedadad.

No. 3 Levelling Detachment will be employed on the Katni-Secunderabad line of levelling commencing from Katni and also in connecting the standard bench-marks at Saugor, Jubbulpore, Nágpur, Raipur, Bilaspur, Sambalpur, Akola and Hinganghát with adjacent lines of levels.
No. 1 Levelling Detachment.
Tabular Statement of Outlurn of Work-Season 1907-08.

Section.	Month.	NO. OF MILES OF DOUBLE LEVELLING.			TOIAL NO. OF FEET.			NO. OF BENCH-MARKS CONNECTED.								Remaris.
					Rise	Fatl.		Old.						G. T. Survey		
		Ms. chs. Iks.	\qquad	Ms. chs. 1 ks .					发	咎						
Guntamal to Kodtrou \{		167014	0406	173020	47366	258.046	233	\cdots	2	10	\cdots	...	12	...	2	${ }^{4}$ Evelusive of 2 Ms. 50 chs. 76 Iks . Check Levelling.
		541338	3300	573318	170810	670'535	662	...	2	30	\cdots	\cdots	17	\cdots	1	
		575236	2633	603439	$396 \cdot 150$	696.881	684	...	5	34	1	\cdots	15	...	3	
		401066	- 2672	403738	537'021	${ }^{272478}$	463	\cdots	3	20	\ldots	\cdots	11	\cdots	...	
	Total . .	1686554	$668 \mathrm{8t}$	1755435	1,151 $3+7$	1,897:440	2,042	\cdots	12	94	1	...	55	...	6	
Madras to K6dfau		16346	64290	82636	Or	...	119	1	...	9	1	...	2	...	1	
		496198	2861	517004	442'703	175312	609	\cdots	6	16	\cdots	...	16	...	1	
		524454	06664	533118	957.063	522.495	614	\cdots	4	26	\cdots	\cdots	13	...	\cdots	
		41152	- 0.0	411520	4649	56.518	78		...	2	2	\cdots	...	
		1082150	93760	1175910	1,404.415	754.325	1,420	1	10	53	1	...	33	...	2	
		2777	162641	2933345	2,555.762	2,652 265	3.462	t	22	147	2	\cdots	88	\cdots	8	

No. 2 Leveli.ing Detachment.
Tabwtar Statement: of outturn of Work-Season 1907-o8.

No. 3 Levelifing Detachment.
Tabular Statement of outturn of work-Season 1507-08.

No. 2 Levelling Detachment.
List of Great Trigonometrical Survey Stations connected by spirit levelling in
season 1907-08.

Report on the introduetion of the American levels into the Survey of India and upon the changes made in the G. T. Survey system of levelling, by Sysd Zille Hasnain, Extra Assistant Superintendent.
The American levels which have been recently introduced are in many respects superior to those hitherto used in the levelling operations of the survey of India. The priacipal improvements may be described as follows :-
(1) Binocular system:-An auxiliary telescope is fixed to the main telescope; this contains two prismatic lenses, on which the image of the bubble is reflected from a mirror mounted cbliquely above the bubble tube; by this means the leveller is able to observe the two ends of the bubble simultaneously with the reading of the staff. Theoretically, in levelling of precision, the bubble should be read at the same instant as the staff. This is impossible with our ordinary levels, for the leveller after reading the staff has to remove his eye from the telescope, and change his position before he can read the bubble.
The mere change in the leveller's position, and in the distribution of the weight of his body, frequently cause a change in the position of the bubble: hence with ordinary levels there can be no certainty that the position of the bubble as indicated by its readings, is absolutely the same as when the staff was read. In this respect the American levels have a great advantage.
(II) Micrometric adjustment:-The main telescope instead of being fixed to the body of the instrument, as in ordinary levels, is placed in a cylindrical outer case, which latter is permanently fixed to the tribrach : the telescope is supported at the object end by two horizontal screws which hold it to the case; at the eye end it rests on the hardened tip of a slow motion screw, provided with a micremeter head. This device enables the leveller to move the telescope in a vertical plane and it facilitates the process of levelling: thus after taking a steff and bubble reading, the leveller is able to bring the bubble to precisely the same position again for the second staff, without touching the foot-screws of the instrument. By this means the amount of dislevelment for a pair of staff readings can always be reduced to a minimum, which is not possible in the ordinary instrument. It is obviously wrong tor a leveller to touch the foot screws of his level brtween a pair of staff readings, and hence when using an ordinary level, he can not eliminate the dislevelment of the iubble, which so often occurs when the telescope is swung round to the second staff after the reading of the first staff and bubble.
(III) Reservoirs in the level tubes:-The American levels are provided with reservoir bubble tubes, such as have been employed on astronomical instruments in India. This arrangement enables the bubble to be kept at an uniform length during changes of temperature, and simplifies the determination of the value of one division of the bubble scale and of the correction for dislevelment.
(IV) Triplication of wires:-The diaphragm carries three horizontal wires instead of the single wire carried in ordinary levels: the upper and lower wires are equidistant from the centre wire. This triplication is a most useful device and the advantages derived from it are fully explained below. A secondary use of the three wires is that it is possible to determine accurately the distance of a staff from the instrument without actual measurement, the interval subtended by the upper and lower wires on a staff at a given distance being known, it is easy to find the distance corresponding to any other interval subtended by the same wires. This becomes particularly useful when levelling is carried across a stream or over broken ground where the chain cannot be used. As explained below American levellers do not chain the distance between their instrument and their staves, but use the wire intervals only for this purpose.
(V) Use of invar :-Nickel steel and other specially selected materials have been employed with advantage in the construction of the American levels. Different parts of the levels hitherto used in India are affected unequally by temperature and their irregular expansion and contraction produced constant dislevelment.
(VI) Portability:- The American levels are considerably lighter than the cylindrical levels which have hitherto been used on levelling of precision in India. (It is of course impossible to say whether the American levels will stand the Indian climate as long and as well as our cylindrical levels have done; the latter instruments have been constantly in use for upwards of 50 years, and are as serviceable now as when they were first made.)
2. With all their good points the American levels have I think certain slight disadvantages :-
(I) As the American level is largely constructed of nickel steel which is magnetic, it is impossible to attach a magnetic compass to the instrument.
(II) The small universal level fixed on the right side of the telescope is not of any practical use.
(III) The milled head of the clamping screw attached to the foot screws is perhaps too large, it sometimes comes in contact with the leveller's fingers when levelling the instrument, and thus the foot screws are unconsciously affected. There seems to be no reason why the clamping screw should have such a big head; one half the size would have answered the purpose equally well, and would not then be in the leveller's way.
(IV) The fittings of the leather cones at either end of the outer case of the telescope are rather flimsy, and are not suited to the Indian conditions and climate. Owing to constant handling, the fittings of the leather cones, outside the clamping rings frequently become loose, and out of position.
3. To an Indian leveller the following points about the American system of levelling appear to be of interest.
(a) Every line of levels is divided into sections of one to two kilometres in length, ($\frac{3}{5}$ to $1 \frac{1}{2}$ miles) and each section is levelled over by a single leveller, in both forward and back directions, if $t \cdot o$ difference between the forward and back results of a section exceeds six millimetres, (or 0.020 foot) the whole section is relevelled, until two vaiues are obtained agreeing to within the above limit
(b) The American staves are graduated only on one face, and all three wires are ' read on both staves.
(c) The bubble is put in the centre of the tube lur each staff reading.
(d) The back staff is read first at stations of odd aumbers, and the forwa:d staff at stations of even numbers.
(e) The distance from the instrument to the staves is not measured, but laid down approximately equal by eye; the distances to the back and forward staves are made to balance at each pair of stations, as nearly as possible, by setting the instrument beyond or short of the centre point between the staves. For this purpose, a record is kept of the intervals subtended by the extreme wires 'of the diaphragm, on all the back' and forward staves separately; this is constantly summed up as the work progresses, and the sums are not allowed to differ by more than 20 metres (65 feet) at any stage.
(f) Folding stands are used and the levels are carried on them throughout the day's work.
(g) The collimation error of the instrument:is determined daily by special observations in the course of the day's work, and corrections on this account are subsequently applied when computing the results.
4. The six points mentioned in the last 'paragraph'may' be compared as follows with our procedure:
(a) By levelling each section in both the forward and back directions, the Americans have no doubt a perfect circuit system. In the G. T. Survey levelling, the direction of the operations is reversed on alternate sections,' and precaution is taken to balance the total length of back and forward sections at every embedded bench-mark, or say at a distance of about ten miles apart; this practically secures all the advantages of a circiuit system, and is a more convenient and a quicker method. The Americans employ a single leveller, who levels each section twice in opposite directions, and the two results of each section must agree to within o.020 foòt. The object of these precautions is (1) to guard against accidental gross error, änd (2) to limit the sectional difference between results. As regards (r) the G. T. Survey system is in my opinion preferable to that of the Americans; in the forther two levellers are employed, one following the other, with separate instruments, comparing their results station by station, the maximum permissible difference between them for each'station being 0.005 foot. Supposing that the American Jeveller happens to make an error at any station, he cannot discover it before he levels the whole section twice over, and even'then he is obliged to relevel the whole section a third and possibly a fourth time to 'rectify his error, whereas, such a mistake would be discovered by the G. T. Survey levellers almost at once, and could be rectified immediately without any great loss of time or labour. Taking a whole season's work into consideration, the number of whole sections having been levelled more than twice by the American levellers works out to nearly 13 per cent., whereas the number of re-levelments of single stations by the G. T. Survey levellers is found to be less than 3 per cont.
As regards (2) there are no hard and fast rules about the limit of sectional differences between the levellers in the G. T: Survey system, but taking 100 coinsecutive sections as a test it was found that the average sectional difference was orii of a foot per section of 2.6 miles in length. Only 9 per cent. of the differences exceeded 0.020 font while 55 per cent. were found to be under 0.010 of a foot. This seems to compare very favourably with the limit of sectional differences, vis., ooto2o of a foot per section of from. 102 kilometres ($\frac{8}{4}$ to $1 \frac{1}{2}$ miles), allowed by the American levellers.
(b) To guard against errors of reding the staff, the Americans read all the three horizontal wires on each staff, the upper and lower wires being equidistant from the centre wire, the mean of their readings must be equal to that of the centre wire'; thus errors of reading are effectively checked.
The G. T. Survey staf is graduated on both faces, the two lades having diferent zeros on the old pattern staff, and different units on the new staff: both faces are read, and the reading of one face checks the reading of the other face. In this respect the American system is superior to the G. T. Survey system and has the advantages of simplicity and
rapidity. By the simple but ingenious device of fixing three horizontal wires in the level, the leveller is enabled, not only to effectively guard against mistakes, but also to completely do away with the so-called bias in reading the staff, for which object the G. T. Survey levellers have had during recent years, to resort to the elaborate and somewhat troublesome device of having different units on the two faces of their staves. If the Indian levels had been provided with three horizontal wires, it would have made the use of the second face of the staff absolutely unnecessary. As a matter of fact the resuits obtained by the three wire readings on one face, would seem to be more accurate than those deduced from single wire readings on two faces; in the former case the difference of level between two points is obtained from six readings, in the latter case from four readings; thus the weight of the former value is abcut 50 per cent. greater than that of the latter.

It' takes appreciably less time to finish all observations at a station, using the three wires on a single face of the staves, than with one wire on both faces; the former method also lessens the labour of the leveller, and it nakes the work of the recorder simpler and easier, and it relieves the staff-man of the necessity of presenting the two faces of the staff in succession to the leveller. : When using both faces of the staves delays and mistakes are ofteri caused by the staff-man showing the wrong face to the leveller, or by the recorder confounding one face with the other. The use of three wires and a single face does away with this source of error completely.
(c) The Americans put the bubble in the middle of the tube for each staff reading, but do not read the bubble. The G. T. Survey levellers not only make the instrument level, but also read the two ends of the bubble for each staff reading. Thus they are able to determine the true amount of any dislevelment which may have occurred between the readings of the two staves; and the necessary corrections for dislevelment can be applied to the approximate differences of level deduced from the staff readings. For this purpose the mean value of one division of the bubble scale of all levels used in the main lines of the G. T. Survey levelling is carefully determined every year before taking the field and suitable tables of correction for dislevelment are prepared for easy use in the field.
The bubbles mounted on all instruments used for precise levelling are sensitive, and take some time to come to rest ; they do not readily come to any required position, and they frequently move through a fraction of a division alter they have apparently been put to a certain reading. Two American levels have been in use during the past season with No. 2 Levelling detachment, and their bubbles have behaved in much the same manner as described above. Now if the bubble is brought to the middle of its tube, but shifts slightly just as the leveller reads the staff, the Americans have to bring the bubble back to the centre, and re-read the staff ; by doing so they spend extra time over the observations; and if they ignore the slight deviation of the bubble from the centre, they introduce a small error due to dislevelment into their work. In a similar case the G. T. Survey levellers would read the two ends of the bubble, and apply the necessary correction for dislevelment. It has been found by actual practice with American levels, that it takes less time to bring the bubble approximately to the ceptre, and to read its two ends, than to try and bring it exactly to the centre for each staff, reading, The G. T. Survey method is therefore quicker than the American method.
(d) The American and G. T. Survey systems are similar in the matter of reading the back stafl first at odd-numbered stations, and the forward staff first at even-numbered stations, in order to cancel errors due to rising and falling refraction.
(e) The advantages of putting the staves at equal distances from the instrument are obviously great; all errors due to curvature and refraction, or imperfect adjustment of the instrument in collimation, are thereby wholly cancelled; the corrections for dislevelment are easily worked out and applied direct to the difference of the readings of the two staves; in addition we are at le to read the two staves with the tclescope at the same focus. The Americans
do not chain their distances, but they are compelled instead to take the following steps:-
(1) To re-focus the telescope for each staff.
(2) To spend time in balancing the distance at each pair of stations, and in keeping a systematic record of the wire intervals throughout the work.
(3) To apply corrections for curvature and refraction in the computations of their work, and last but not least, to determine the collimation error of their instruments every day, and subsequently apply corrections for the same in their computations.
Presumably the chief reason why the Americans do not chain the distances, is owing to labour in that country being expensive. In India it only costs a levelling party about Rupees 15 a month to employ men to measure the distances in advance of them, and the advantages gained thereby more than counterbalance the small expenditure.
(f) The Americans use folding stands, and the levels are carried on them throughout the day's work; in the G. T. Survey the custom is to use the universal rigid stand. The stand man goes ahead of the leveller to the station of observation, and approximately levels the stand by means of a mason's level; this greatly helps the leveller in adjusting the instrument, besides which the rigid stand is far more stable than the folding stand. It is a standing rule in the G. T. Survey that the instrument must always be replaced in its box, on the completion of observations at each station. The box containing the level is carried in a cradle by two men from station to station, and the levels are thus as little exposed to atmospheric changes, accidents, etc., as possible. It is mainly due to these precautions that the standard levels of the Survey of India have remained in such good condition for so many years.
(g) The G. T. Survey levels are adjusted for collimation periodically in the field; there is no necessity for determining the collimation correction daily, as all errors due to this cause are wholly cancelled by putting the staves at equal distances from the instrument.

Report of the Committee appointed to examine the American Precise Binocular Level.

The questions raised in Syed Zille Hasnain's report involved radical changes in the system of levelling in vogue in the Survey of India, and in March 1907 Colonel Burrard, the Superintendent of Trigonometrical Surveys, appointed a Committee consisting of Major G. P. Lenox-Conyngham, r.E., Fresident, and Captains H. M. Cowie, r.E., and C. M. Browne, d.s. O., R.E., members, to consider the whole subject of precise levelling. The Committee assembled at Mussooree in August 1907, and after a thorough investigation of all the questions at issue, summarised their conclusions as follows :-

1. The American levels are on the whole superior to our old levels.
2. Three readiogs taken on one face only of each staff are better than one reading on each of the two faces. By the system of three wire readings, the error of estimation can be sensibly reduced, and the speed of working be increased.
3. It is preferable to record the level readings and to apply corrections for dislevelment, rather than to attempt to keep the bubble in the centre of its scale.
4. The distances from the instrument to the staves should always be made equal by chain measurement, and not be balanced by the tacheometric method used by the Americans. With equal distances it is not necessary to apply corrections for collimation, curvature or refraction.
5. It is rot essential that the instrument be in the same siraight line as the staves.
6. As nickel steel, which is magnetic, is largely used in the construction of the Americen level, it is impossible to combine the latter with a magnetic compass.
7. The small circular level fitted to the American level is not sensitive, and though useful as an indicator, is not to be relied on for adjusting the instrument.
8. The leather cones of the American levels should have more margin to spare outside their clamping rings.
9. The level may be allowed to be carried on the stand at the discretion of the observer.
10. The G. T. Survey limits of error appear to be much the same as those of the United States Coast and Geodetic Survey, and there is no reason to alter them.
II. The telescopes of the American levels are inferior to those of the cylindrical levels.
11. On all other points, the committee agreed generally with the remarks made by Munshi Syed Zille Hasnain in his report.

In conformity with the above recommendations, the following changes have now been introduced into the G. T. Survey levelling system by order of the Superintendent of Trigonometrical Surveys.
(a) The American levels are to be used in future on all first class levelling operations, and are to supersede the old levels.
(b) Three readings ate to be taken to one face of each staff, in place of one reading to each of the two faces.
(c) The bubble is to be read from the observing position by means of the prisms and mirror, and only one reading of the two ends of the bubble are to be taken for each staff reading.
(d) The instrument may be erected to one side of the line joining the two staves, when it is found advantageous to do so.
(e) All other precautions bitherto followed in the G. T. Survey system are to be continued.

III.

NARRATIVE REPORT.

Extract from the Narrative Report of Captain H. M. Cowie, R.E., in charge No. 22 Party, (Astronomical) for season 1907-08.

0. On conclusion of the comparisons between the Indian Standard Bar A and the Bars IB and Is, carried out during November, December and January at Dehra Dún by this party in co-operation with No. ${ }^{2} 3$ Party, normal latitude operations were commenced in the country to the south and to the east of Deesa. By the end of the field season six Great Trigonometrical stations had been visited, lour of them being in that portion of the Abu meridional series between Sonáda, a few miles north-east of Ahmedabad, and Chaniána, some miles east of Deesa. The othertwo stations are at the junction of the Karáchi longitudinal and the Singi meridional series.
ooo. No changes were made this season, in respect to the method of observation and as regards the instruments used, the only modification was the substitution of a 4 volt glow lamp in place of an oil lamp for the illumination of the field of the telescope and the use of a similar lamp for lighting up the levels. Both lamps were run off the same battery of four, N. size, Obach cells. The lamp connections and bracket were designed by me and made in the Dehra workshop. The adjustment of the glow lamp for the illumination of the field requires a little more care than is necessary in the case of an oil lamp, but when once adjusted, there is no doubt as to which is the pleasanter syst.m to work with. Apart from the advartages gained by the removal of a hot oil lamp from the observatory, the comfort of the observer is much increased in that his attention is not frequently distracted by flickering and that the electric lamp requires little or no attention. Four N. size Obach cells will work satisfactorily for the whole season if used economically. With instruments properly adjusted, it will be found to be unnecessary to switch on the cuirent more than half a minute before the transit of the star or to keep it running for more than a minute at a time.

On an average, the programme at each station embraced 52 observations to 50 stars, combined to form 27 pairs. The stars selected for observation were all taken from Newcomb's Catalogue of fundamental stars.

At the last two stations visited, Kárdo and Dhámanva, Mr. J. deG. Hunter, m.a., joined the party for instructional purposes. He already had some experience in taking observations of precision and his visit was for the purpose of acquiring a knowledge of the methods of observation and computation. Further on will be found a table giving the respective results obtained by Mr. Hunter and my'self.
ooo. In Volume XVIII of the Professional volumes of the Survey of India, we find India divided into tracts or regions according to the nature and magnitude of the plumb-line deflections. The G. T. slatıons visited lie in or close to the northern portion of region No. 7. Chart No. I is an orographical

OROGRAPHICAL CHART OF REGION No. 7.

*-8 8 Latiende Brative of Sexwo 1907.03
Sate 1 lach $=728$ Milos

- $5 \cdot 3$ Latíule Station of a prerious Sewon

The Negrain riza applias to Northeriy Dofoctions
The Peritize vigo to Southerly Defections
Heighla are given in foet, Depllax is fathoms
chart of this region, showing in large figures the position of the stations visited in 1908 and in small figures those at which the plumb-line deflections had been determined in previous years. Against each point is noted the deflection of the plumb-line found there.

Turning to this chart, we see that at the commencement of the 1908 latitude operations, the following facts were known about deflections in the neighbourhood of Deesa. The average deflection for Region No. 7 is $-4^{\circ} 7^{\prime \prime}$. At Deesz, itself, a deflection of $-8.20^{\prime \prime}$ has been found; at Chaniána, about 23 miles east of Deesa, there is $-11 \cdot 25^{\prime \prime}$. About 3I miles to the north-west of Deesa, at Khankharia, the plumb-line is defected by $+1{ }^{\circ} 98^{\prime \prime}$. In the distance of 3r miles the value of the deflection has changed by $10^{\circ} 18^{\prime \prime}$. At Oria on Mount Abu, about 39 miles north of Chaniána, the deflection is $-3.33^{\prime \prime}$. giving a change of $792^{\prime \prime}$ in the interval. Sixty-eight miles to the south of Chaniána, at Sonáda, the deflection is found to be $-4.28^{\prime \prime}$ and at Aramlia, about 154 miles east of Chaniána, the plumb-line is deflected by $-4^{\prime 6} 1^{\prime \prime}$. Still further to the south and to the east of the Deesa-Chaniana locality, we find deflections of $4^{\prime} 7^{\prime \prime}, 55^{\prime \prime}, 3^{\prime} 1^{\prime \prime}, 4^{\prime} 6^{\prime \prime}, 3^{\prime} 2^{\prime \prime}, 4^{\prime \prime} 4^{\prime \prime}, 3^{\prime} 4^{\prime \prime}$, to the north, that is to say normal regional deflections. Thus when the 1908 work was commenced, it was known that the Deesa-Chaniána locality exhibited large deflections to the north, and that this deflection to the north decreased rapidly as we went northwards and westwards. To the south and east we had no data nearer than Sonáda and Aramlia at distances of 70 and 150 miles respectively, and these two places had been found to be normal. Was the change of deflection between the normal at Sonáda and Aramlia and the abnormal at Chaniána a slow one or was it abrupt, as had been shown to be the case to the north of Deesa ? Did Sonáda and Aramlia mark the limits of the normal area or did this extend closer to Chaniána? Was the Chaniána deflection approximately the maximum in this locality or would a still greater deflection be met with a little further to the south ? Would relatively large deflections be found to occur at stations situated on the main mass of the Aravalli Hills? It was hoped that some light might be thrown on these questions by the latitude operations of 1908.
ooo. The principal results of the season's observations are collected in the following table.

TABLE.

	Salation.	Longitude.	Hèight above M. S. L	Astronorical Latitude.	Seconds of Geodetic Latltude.	Deflection.
		- ,	Feet.	- , "	$*$	F
Moráli	-	73 -	466	23 25 1747	23.18	-571
Dhámanva		7233	397	$2332 \quad 2.66$	8.40	-5.74
Kaináth		73 1	1,385	23 51 14.99	23.79	-8.80
Kárdo		7246	807	$2357 \quad 2 \cdot 17$	10.02	-7.85
I.akarwás		7352	2,574	24 3: 41\%05	47.99	--6.94
Tiki		7353	2,369	245534.52	$38 \cdot 24$	-372

These results show that to the south of Chaniána, the latitude of which is $24^{\circ} 6^{\prime} 37^{\prime \prime}$, and where the deflection is $-1125^{\prime \prime}$, we again find an abrupt change in the value of the plumb-line deflection. At Kárdo, about 16 miles south-east of Chaniána, the deflection has changed by $+3.4^{\prime \prime}$ or on an average by one second in 4.7 miles, Between Kárdo and Dhámanva, 31 miles further south the deflection changes by only $+2.1^{\prime \prime}$ or by one second in 15 miles; 3^{2} miles still further to the south than Dhámanva, the change is $+\mathrm{r}^{\prime \prime} 3^{\prime \prime}$ which gives a rate of one second in $24^{\circ} 6$ miles.

The results of the observations of former years show that to the north of Chaniána between that station and Oria, 39 miles distant, the deflection changes by one second in 4.9 miles. Between Chaniána and Deesa, 23 miles to the west-north-west, the rate of change is one second in 7.5 miles. Between Deesa and Khankharia, 31 miles still further to the north-west, the change is one second in 3 miles. This rapid change of the value of the deflection round Chaniána tends to show that the disturbing influence to which the relalively high value at this station is due, originates in a purely local cause, situated either upon the surface or shallow-seated below it. The pronounced change between Kárdo and Chaniána, for instance, indicates that the distance separating these two stations is, in magnitude, a decidedly significant fraction of the distance of either of these stations from the seat of the disturbing influence. The distance between the two stations is only some 16 miles. Besides this, we have the fact that on all sides of Chaniána, the change of deflection is of the same sign. In every direction the northerly deflection is found to decrease. Considering the deflections at the three stations of Chaniána ($-11^{\circ} 25^{\prime \prime}$) Kárdo ($-7.75^{\prime \prime}$) and Kaináth ($-8.80^{\prime \prime}$) we see that at Kárdo, the station nexrer to Chaniána, where the deflection is large, the deflection is less than at Kaináth, further away. One of the three values is anomalous. While the sign of the change of value between Chaniána and Kárdo is positive, that between Kárdo and Kaináth is negative. though in moving from station to station, the changes of position have continued in the same direction. Moving south from Kaináth and Kárdo, the sign of the change is again positive. As we proceed southwards from Oria, in the north, through Chariána, Kárdo, Kaináth to Dhámanva, the sign of the changes are, in order negative, positive, negative and positive. To produce this condition of affairs, more than one distinct influence would seem to be in operation, Now, the whole area under consideration is of small extent. It is only about 100 miles from Oria to Sonáda. We find thus, that there are more masses than one, causing deflections of the plumb-line; that these masses are strictly local and situated either on the surface or shallow-seated below it. As the whole area is not large, each mass cannot cover any large extent and consequently, to produce the decided changes of value in the locality, it would appear that these masses must be of a density considerably above the avcrage of the suifice and the crust of the earth. As to whether these masses are on the surface or below it, it is impossible to say until the computation of the theoretical deflections has been performed. Until we can allow for the effects of visible surface masses we shall not be in a position to argue the existence of invisible sub-surface masses of great density.

During the season, I determined the densities of various rock specimens collected in the neighbourhood of the stations. The values found are tabulated below :

Densities of rock specimens.

Station.	From whence obtained.	Density.	Station.	From whence obtained.	Density.
Tiki	North-west	$2 \cdot 63$	Moráli	East	3'03
"	"	2.90	" .	Station	$2 \cdot 56$
"	"	3.04	" .	South	$2 \cdot 36$
"	South	2.84	" .	West	$2 \cdot 75$
" .	East	$2 \cdot 66$	" .	North	2.33
"	"	$2 \cdot 67$	Kárdo	"	$2 \cdot 59$
Lakarwás	West	$2 \cdot 62$	"	East	2.59
"	Station.	$2 \cdot 65$	" •	West	$2 \cdot 59$
"	North	$2 \cdot 62$	Kaináth	East	$2 \cdot 42$
"	South	2.88	"	North	2.63
"	" -	3.56	"	West	$2 \cdot 55$
"	"	$3 \cdot 63$	"	South	$2 \cdot 49$
"	East	$2 \cdot 67$			

The only figures, which are specially remarkable, in the list are the quantities for the two specimens from the south of the station of Lakarwas, 3.56 and 3.63 .

As regards the two stations of Tiki and Lakarwás, situated in the Aravalli hills, we see that at Tiki the deflection is only $-3^{\circ} 73^{\prime \prime}$, while at Lakarwás it is $-6.94^{\prime \prime}$. For this change we see at once some explanation in the orography of the locality. The two stations are at nearly the same altitude above sea level, about 2,000 feet, but while a great portion, of the hill masses that rise about 2,000 feet, lie to the north of Lakarwás Tiki, is so placed that the greater prnportion of these masses lies to the south. Consequently the effects of that porion of the Aravalli hills, rising in this locality to above 2,000 ftet, tend to be opposite sign at the two stations.

The results obtained at Dhámanva and Moráli are very slightly greater than values found at places within the normal area and seem to indicate that these places only just come within the sphere of influence of the disturbing causes in the Chaniána locality.

As regards the possible existence of a deflection still greater than that at Chaniána, we see that to the south, south-east and north-west the probability of the occurrence of a deflection materially greater is small. Deesa on the one side and Kárdo on the other, neither station further away than 20 miles, exhibit considerably smaller values. Between Chaniána and Oria or Lakarwás, however, there are larger intervals and it is possible that a larger deflection might be found.
oco. The following table gives further particulars regarding the observations at the different stations.

TABLE.

Station.	No. of stars.	No. of observations	Seconds of Latitude.	p.e.	$\begin{gathered} \text { p. e. of } \\ \text { unit weight. } \end{gathered}$	E.W-W.E.	Apparent error of micrometer value per	Observer.
			"	"	"	"	"	
Moráli	52	55	17×47	± 0.055	$\pm{ }^{\prime} \cdot 274$	-0.33	-0.0059	H. M. C.
Dhámanva	41	42	$2 \cdot 65$	± 0.041	$\pm 0^{17} 1$	+0.57	+0.00+2	
"	42	39	$2 \cdot 68$	$\pm 0 \cdot 068$	± 0.283	+018	+0.0008	J. deG. H.
K aináth	57	58	14.99	± 0.043	± 0.216	+o.03	-0'0017	H. M. C.
Kárdo	37	45	227	± 0.062	± 0.253	+0.07	+0,0042	"
"	35	42	201	$\pm{ }^{\circ} \mathrm{O} \times 1$	± 0.326	-0.20	+0.0072	J. deG. H.
Lakarwás	51	49	41.05	± 0.076	± 0.360	+0.04	+0.0016	H. M. C.
Tiki	57	60	$34^{\prime} 5^{2}$	± 0.062	± 0.312	-0.15	+0.0023	"
Means	49	52	$\pm{ }^{\circ} 265$	+0.04	+o,00c8	H. M. C.
	39	41	± 0.305	-0.0ı	+0.0040	J. deG. H.

The micrometer value used in the computations was $69.210^{\prime \prime} \pm 0.003$ determined from observations to 49 star couples.
000. If, considering any two stations on any meridian, we take the difference, "deflection at southern station-deflection at northern station ", a negative sign characterising this difference will show that the plumb-lines at the two stations are relatively inclined to one another; a positive sign will show that they are inclined away from one another, (a negative deflection being a deflection relatively to the north).

Now when the plumb-lines at the two stations are inclined away from one another, we conclude that the level surface between the two is of a somewhat greater radius of curvature than the surface of our spheroid. When the plumblines are inclined towards one another, the radius of curvature of the level surface must be somewhat smaller than that of the spheroid.

Where the radius of curvature is small, we have, relatively to the spheroid something of the nature of a protuberance where we may expect to find gravity slightly in excess. Where the radius of curvature is great, we may expect to find gravity in defect.

On the accompanying chart No. II, I have joined by a thick blue line latitude stations at which the plumb-lines are found to be deflected towards one another and by a thick red line, those at which they are deflected away from each other. Upon these cross sectional lines, I have blocked out approximately the area in which the piumb-lines are inclined towards and away from each other. In the blue area we may expec, to find gravity rather in excess and in the red, slightly in defect. This, however, is to be considered as merely a rough approximation, for it assumes that each observed deflection is a local maximum and also, that between every two stations, the change of deflection is gradual and regular,

\#nea in which it is suggested that gravity is in defect
Area in which it is suggested that gravity is in excess

- Pendulum Station at which gravity has been found to be in defect
- Pendulum Station at which gravity has been found to be in excess

The data at present available does not allow of the chart being extended to the west beyond Long. 72° and to the east beyond Long. 81°. In the area included between the meridians of 82° and 86° and the parallels of 20° and 24° there is no triangulation which will provide data enabling us to draw out the defining lines of the blue and red regions in this part of india.

Also shown on the chart are the stations at which the half seconds pendulum has been swung. By a blue dot are represented those places at which gravity has been found to be in excess and by a red dot, such places as are characterized by deficiency of gravity. The actually observed values of gravity at these places will indicate to what degree the representation of the areas, over whicin this force is in excess and defect, as deduced from laitude observations, may be considered correct. As far as the gravity work goes at present, the suggestions based on plumb-line determinations are fairly well corroborated by the pendulum results. A glance at the chart, however, shows that, at present, the pendulum stations are few and distributed more or less round the margin of the area covered by the latitude stations. Over the central portion of this area there are, as yet, no gravity determinations by the half seconds pendulum.

NARRATIVE REPORT.

Extract from the Narrative Report of Captain H. M. Cowie, R.E., in charge No. 23 Party (Pendulums) for Season, 1907-08.
000. During the early part of 1908 , a series of pendulum observations was carried out by Major Lenox-Conyngham, R.E., with the object of ascertaining whether, in montane and submontane regions in the southern portion of the Indian peninsula, the force of gravity varied from normal in like manner and degree as in Northern India. The scene of these operations was the trigon lying south of the latitude of Madras.

In consequence of the employment of the party during November, December, and part of January in carrying out comparisons between the standard to feet $B a r, A$, and the reference Bars I_{B} and I_{S}, the time available for the pendulum observations was shorter than usual.

The pendulums, nevertheless, where swung at eight stations, exclusive of the base station, Dehra Dún.
ooo. These stations were:-

Dehra Dún Bangalore Mysore Kolar, Edgar Shaft, ender-ground station surface station

Salem at the foot of the Shevaroy Hills.
Yercaud on the Shevaroy Hills.
Ootacamund on the Nilgiri Hills.
Kodaikánal on the Palni Hills.
000 . On the whole, satisfactory rooms were available for the observations and it was possible to ensure a fairly steady temperature during each set of swings, though at Yercaud, Kodaikánal and Dehra, in April, the hourly change of day temperatures, was, as will be seen, rather large. No corrections for lag have been applied in deducing the times of vibration. Corrections for lag, based on the mean hourly changes of temperature at Bangalore, Kodaikánal and Dehra in April, would at each place amount to about 3×10^{-7} seconds. In the table below are shown the average night and day temperatures and the hourly changes.

TABLE I.

Suation.		Night.		Day.		Mean.	
		Average temp.	Hourty change.	Average temp.	Hourly change.	Average temp.	Hourly change.
Dehra Dún, 1908 January		0	\bigcirc	-	\bigcirc	0	-
		16.35	+0.09	16.18	+0.08	16.27	+0.08
Bangalore	- .	24.41	+0.13	24.35	+0.11	2438	+0.12
Mysore	- .	25;86	-0.04	2403	+0'11	2540	+0.04

TABLE I-contd.

ooo. The next table gives the amounts of the flexure correction observed and adopted at the various stations. As a rule, two determinations of this correction were made at the commencement and again at the end of the coincidence observations.

TABLE II.

	Station.	Date 1908.	Observed Flexure correction.	Adopted Flexure correction.
Dehra Dû́n	-	January 1st $"$ 1st . $"$ $4^{\text {th }}$ \cdot $"$ $4{ }^{\text {h }}$ \cdot $"$ $13^{\text {th }}$. $"$ $13^{\text {th }}$.	57° 56.5 53.9 $55 \cdot 3$ $53 \cdot 6$ 53.8	$\left\{\begin{array}{l} \} \text { January ist to } 4 \text { th. } \\ 56 . \\ \text { January } 4 \text { th to } 13 \text { th. } \\ 54 . \end{array}\right.$
Bangalore	- . .	$\begin{array}{ccc} \text { February } & \text { 2nd } & . \\ \prime \prime & \text { 2nd } & . \\ \prime \prime & \text { 5th } & \cdot \\ " & \text { 5th } & . \end{array}$	$5^{17} 7$ $52 \cdot 2$ 56.1 $55^{\prime} 4$	54.
Mysore	。	$\begin{array}{\|rrr\|} \hline \text { February } 6 \text { th } & . \\ \text { " } & \text { 6th } & . \\ " & \text { 9th } & . \\ " & \text { yth } & . \end{array}$	580 57'5 564 55.5	57.

TABLE II.

Station.	$\begin{aligned} & \text { Date } \\ & 1908 . \end{aligned}$	Observed Flexure correction.	Adopted Flexture correction
Edgar Shaft, underground	February 17th	54'2	
	" 17th	$55^{\prime} 9$	
	, 20th	50.9	
	" 20th	50.9	53
Edgar Shaft, surface .	February 21st	$49^{\prime} 4$	
	, 21st	49.4	
	" 24th .	47^{2}	
	, 24th .	$48 \cdot 5$	
	, 26th .	48.2	49.
Salem	March ist .	57^{1}	
	, ist .	55^{6}	
	, 3rd .	56.4	
	, 3rd	56.4	56.
Yercaud -	March 6th	55.4	
	" 6th	55%	
	, 9th .	54°	
	\% oth .	$55^{\circ} 5$	55.
Ootacamund	. March 15th	56.4	Rejected.
	$\text { , } 15 \text { th }$	56.7	
	" 15th -	60.3	
	" 15th .	58.7	
	" 18th . .	57.5	
	1) 18th	579	59.
Kodaikánal	March 22nd	89.9	
	, 32 nd .	90.4	
	, 25th .	82.9	
	" 25th .	80.8	86.

TABLE II-continued.

At Kodaikánal, as the foor of the observing room was not in very good condition, the marble slab, carrying the pendulum support, was cemented to an "isolated" concrete pillar specially built for the purpose, the large value of the correction at this station is most probably due to the nature of this pillar. At Ootacamund, after two sets of observations had been made, it was found that the agate plane on which rest the knife edges of the pendulum, deviated more than was desirable from the horizontal. The results of these two sets were accordingly rejected. The agate plane was adjusted and fresh sets of observations made. It is remarkable that the adjustment of the agate plane, effected by tightening the screws clamping the stand to the maible slab, had the result of sensibly increasing the flexure correction.
ooo. Throughout the season, the time observations were taken by Babu Hanuman Prasad, Extra Assistant Superintendent. The methods of observing differed in no respect from those of the previous year. This season, however, the new bent Transit instrument, which had arrived in India in the autumn of 1907, was taken into use, replacing the portable. Transit belonging to the longitude equipment.

The main details of the new instrument are as follows :-
Effective aperture of objective, $2 \frac{1}{2}$ inches; focal length, about 20 inches.
It has a micrometer eye-piece capable of being turned through 90° and eye-pieces givigg powers of about 30,50 and 70 , respectively. It is provided with a level, mounted Talcott-wise and is adapted for the taking of Talcott Latitude observations.
The results of the observations were thoroughly satisfactory. The abstract which follows gives for each station the average p.e., of a value of the clock rate determined from star transits on two successive nights.-

	s		s
Dehra Dún, January	± 0.021	Salem	± 0.010
Bangalore	0.013	Yercaud	$0 \cdot 009$
Mysare	orosi	Ootacamund	00015
Edgar Shalt, underground	0.019	Kodaikánal	...
Edgar Shaft, surface	0.018	Dehra Dún, April	0.014

The mean of these values is ± 0.014. The average number of stars observed each night being 15 , the avarage p.e., of a clock rate determined by observations of one star on tro successive nights is $\pm 0^{\circ} 054$.
oco. In the table below are given the times of vibration of each pendulum in January and April, 1908, at Dehra Dun.

TABLE III.
Times of vibration at Dehra Dan.

Date.	Pendulum.				Mean.
	137	138	139	140	
Jan. 1-2	s 0.5072575	$\begin{aligned} & \text { s. } \\ & 0.5075013 \end{aligned}$	$\begin{aligned} & \text { s } \\ & 0^{\prime} 5071596 \end{aligned}$	0.5070862	$\begin{aligned} & \mathrm{s} \\ & 0.5072512 \end{aligned}$
2 -3	2564	5007	1594	0860	2506
4-5	2556	5017	1601	0869	2511
$7-12$	2570	5005	1593	0870	2509
Means . .	$0 \cdot 5072566$	$0 \cdot 5075011$	$0 \cdot 5071596$	$0 \cdot 5070865$	$0 \cdot 5072510$
April 17-18	0'5072573	0.5075008	0.5071596	$0 \cdot 5070876$	0'5072513
20-21	2576	4999	1596	0878	2512
21-22	2573	5005	1 593	0874	2511
Means	0.5072574	- 0.5075004	0.5071595	$0 \cdot 5070876$	0.5072512
General Means for Season	0.5072570	$0 \cdot 5075008$	0'507r595	0.5070871	0.5072511
$\begin{gathered} \text { Difference (Apr. } \\ \text {-Jan.j . } \end{gathered}$	+8	--7	-I	+11	$+2$

The agreement between the April and January value is satisfactory.
ooo. In order to indicate to what degree the several pendulums have maintained an invariable character during the season and how far we are justified in adopting the general means of the abstract above as representative of each pendulum during the period January to April, the differences between individual pendulums and the mean pendulum have been computed for each set at each station. These differences are given in the following tatle in the columns under the headings of the pendulum numbers. Further, the mean difference for the season is deduced for each pendulum, and using these mean differences we derive the residuals, v, v.

TABLE IV.

Difference between individual Pendulums and mean Pendulum.

Station.	Date.	137	v	138	v	139	v	140	v
Dehra Dún	$\begin{array}{ll} \text { Jan. } & 1-2 \\ & 2-3 \\ & 4-5 \\ & 7-12 \end{array}$	$\begin{aligned} & -63 \\ & -58 \\ & -45 \\ & -61 \end{aligned}$	$\left\lvert\, \begin{aligned} & -3 \\ & +2 \\ & +15 \\ & -1 \end{aligned}\right.$	$\begin{aligned} & -2501 \\ & -2501 \\ & -2506 \\ & -2496 \end{aligned}$	$\begin{aligned} & -4 \\ & -4 \\ & -9 \\ & +1 \end{aligned}$	$\begin{aligned} & +916 \\ & +912 \\ & +910 \\ & +916 \end{aligned}$	$\begin{aligned} & -1 \\ & +3 \\ & +5 \\ & -1 \end{aligned}$	$\begin{array}{r} +1650 \\ +1646 \\ +16_{42} \\ +1639 \end{array}$	$\begin{aligned} & -9 \\ & -5 \\ & -1 \\ & +2 \end{aligned}$
Bangalore	Feb. 2-3 $3-4$	$\begin{aligned} & -50 \\ & -68 \end{aligned}$	$\begin{aligned} & +10 \\ & -8 \end{aligned}$	$\begin{aligned} & -2504 \\ & -2500 \end{aligned}$	$\begin{aligned} & -7 \\ & -3 \end{aligned}$	$\begin{aligned} & +915 \\ & +920 \end{aligned}$	$\begin{array}{r} 0 \\ -5 \end{array}$	$\begin{aligned} & +1640 \\ & +1649 \end{aligned}$	$\begin{aligned} & +1 \\ & -8 \end{aligned}$
Mysore .	$\text { Feb. } \begin{aligned} & 7-8 \\ & 8-9 \end{aligned}$	$\begin{aligned} & -56 \\ & -65 \end{aligned}$	$\left\lvert\, \begin{aligned} & +4 \\ & -5 \end{aligned}\right.$	$\begin{aligned} & -2505 \\ & -2488 \end{aligned}$	$\begin{aligned} & -8 \\ & +9 \end{aligned}$	$\begin{aligned} & +925 \\ & +911 \end{aligned}$	$\begin{array}{r} -10 \\ +4 \end{array}$	$\begin{aligned} & +1638 \\ & +1643 \end{aligned}$	$\begin{aligned} & +3 \\ & -2 \end{aligned}$
Edgar Shaft, underground .	$\text { Feb. } \begin{aligned} 17-18 \\ 18-19 \\ 19-20 \end{aligned}$	$\begin{aligned} & -62 \\ & -56 \\ & -61 \end{aligned}$	$\left\lvert\, \begin{aligned} & -2 \\ & +4 \\ & -1 \end{aligned}\right.$	$\begin{aligned} & -34{ }^{-6} \\ & -2498 \\ & -2496 \end{aligned}$	$\begin{aligned} & +1 \\ & -1 \\ & +1 \end{aligned}$	$\begin{aligned} & +913 \\ & +909 \\ & +912 \end{aligned}$	$\begin{aligned} & +2 \\ & +6 \\ & +3 \end{aligned}$	$\begin{aligned} & +1644 \\ & +1644 \\ & +1646 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \\ & -5 \end{aligned}$
Edgar Shaft, surlace .	$\begin{array}{r} \text { Feb. } \begin{array}{r} 21-22 \\ 22-23 \\ 23-25 \end{array} \end{array}$	$\begin{aligned} & -6 \mathrm{r} \\ & -60 \\ & -60 \end{aligned}$	$\begin{array}{r} -1 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & -2501 \\ & -2498 \\ & -2497 \end{aligned}$	$\begin{array}{r} -4 \\ -1 \\ 0 \end{array}$	$\begin{aligned} & +923 \\ & +914 \\ & +915 \end{aligned}$	$\begin{array}{r} -8 \\ +1 \\ 0 \end{array}$	$\begin{aligned} & +16_{41} \\ & +16_{44} \\ & +16_{41} \end{aligned}$	$\begin{gathered} +0 \\ -3 \\ 0 \end{gathered}$
Salem	$\begin{array}{ll} \text { Mar. } & 1-2 \\ & 2-3 \end{array}$	$\begin{aligned} & -5^{8} \\ & -63 \end{aligned}$	$\begin{aligned} & +2 \\ & -3 \end{aligned}$	$\begin{aligned} & -2498 \\ & -2491 \end{aligned}$	$\begin{aligned} & -1 \\ & +6 \end{aligned}$	$\begin{array}{r} +916 \\ +912 \end{array}$	$\begin{aligned} & -1 \\ & +3 \end{aligned}$	$\begin{aligned} & +1639 \\ & +1642 \end{aligned}$	$\begin{aligned} & +0 \\ & -1 \end{aligned}$
Yercaud .	$\begin{aligned} \text { Mar. } & 6-7 \\ & 7-8 \end{aligned}$	$\begin{aligned} & -57 \\ & -65 \end{aligned}$	$\begin{aligned} & +3 \\ & -5 \end{aligned}$	$\begin{aligned} & -2495 \\ & -2497 \end{aligned}$	$\begin{array}{r} +2 \\ 0 \end{array}$	$\begin{aligned} & +913 \\ & +919 \end{aligned}$	$\begin{aligned} & +2 \\ & -4 \end{aligned}$	$\begin{aligned} & +1641 \\ & +16_{41} \end{aligned}$	
Ootacamund	$\begin{array}{r} \text { Mar. } 15-16 \\ 16-17 \end{array}$	$\begin{aligned} & -58 \\ & -60 \end{aligned}$	$\begin{array}{r} +2 \\ 0 \end{array}$	$\begin{aligned} & -2493 \\ & -2494 \end{aligned}$	$\begin{aligned} & +4 \\ & +3 \end{aligned}$	$\begin{aligned} & +9 r_{4} \\ & +91_{3} \end{aligned}$	$\begin{aligned} & +1 \\ & +2 \end{aligned}$	$\begin{aligned} & +1638 \\ & +1640 \end{aligned}$	$\begin{aligned} & +3 \\ & +1 \end{aligned}$
Kodaikánal	Mar. 22-25	-62	-2	-2487	+10	+915	0	+1635	+6
Dchra Dún	$\begin{array}{r} \text { Ap. }\left\{\begin{array}{c} 17-18 \\ 22-23 \end{array}\right\} \\ 20-21 \\ 21-22 \end{array}$	$\begin{aligned} & -60 \\ & -64 \\ & -62 \end{aligned}$	$\begin{aligned} & -4 \\ & -2 \end{aligned}$	$\begin{aligned} & -2+95 \\ & -2487 \\ & -2494 \end{aligned}$	$\begin{aligned} & +2 \\ & +10 \\ & +3 \end{aligned}$	$\begin{aligned} & +917 \\ & +916 \\ & +918 \end{aligned}$	$\begin{aligned} & -2 \\ & -1 \\ & -3 \end{aligned}$	$\begin{aligned} & +1637 \\ & +16_{34} \\ & +16_{37} \end{aligned}$	+4 +7 +4
Means	...	-60	\cdots	-2497	...	+915	...	+1641	...

The nature and magnitude of these residuals show that no appreciable change has taken place in any of the pendulums, and that, therefore, the general means of Table III are correctly representative of the season.
ooo. In Table V, are given for each station the mean observed time of vibration and the value of g deduced therefrom.

TABLE V.

| Station. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ooo. In Table IV are given the residuals \mathbf{v}. formed by comparison of the mean difference with the individual differences between each pendulum and the mean pendulum. Squaring and summing these residuals, we get-

$$
\rho=0.6745 \sqrt{\frac{[V V]}{3(n-1 \bar{j}}}
$$

where ρ is the p. e. of one complete determination of the time vibration of any pendulum, and n is the number of sets of observations. Since there are four pendulums, the p. e. of one complete determination of the time of vibration of the mean pendulum is-

$$
\rho_{0}=\frac{\rho}{2}
$$

From Table IV we get the following sums of squares of residuals-

Pendulum	No.	137	138	139	140
Evv		537	516	340	337

Whence [vv] ${ }^{1730}$
and ($\mathrm{n}-\mathrm{I}$) being 22

$$
\begin{aligned}
\rho & =06745 \sqrt{\frac{1730}{3 \times 22}} \\
& = \pm 3.45
\end{aligned}
$$

and $\rho_{0}= \pm 173$
the unit being the seventh decimal place of a second.
If we consider the differences that exist between the mean time of vibration for each complete set of observations and the general mean for each station we get another series of residual from which we can again compute a value of the p . e. of one complete determination of the time of vibration of the mean pendulum. In this case the p. e. $\mu_{0}=0.6745 \sqrt{\frac{[w]}{(m-n)}}$
where m is the total number of sets and n is the number of stations.
The residuals \mathbf{v} are shown in table VI.

TABLE VI.

TABLE VI-continued.

$$
\left[\begin{array}{c}
\prime \prime \\
\mathrm{vv}^{\prime}
\end{array}\right]=102 \text { and }(m-n)=14 .
$$

Which gives

$$
\mu_{0}= \pm \mathbf{1} \cdot 82
$$

Now in computing ρ_{0} we have, taking each set separately, considered the differences between the individual pendulums and the mean pendulum of the set. Consequently causes which produce effects constant during each set but varying from set to set would give rise to errors, of which this investigation could take no count.

On the other hand, μ_{0}, being deduced from the differences between the time of vibration of the mean pendulum of each set and the general mean for the station, would be affected by errors of this nature, such as might be caused by variations of clock rate and lag in temperature on the part of the pendulums. The close agreement between μ_{o} and ρ_{0}, however, shows that the errors due to such causes, were for the season as a whole, extremely small.
000. The final results of the scason's observations are given in the next two tables. The orographical corrections for the reduction to sea level were found to be significant in every case except Mysore and Bangalore. For all stations but Kodaikánal these corrections are based on a detailed examination of the surface masses within 35 miles of the observatory. In the case of Kodaikánal, the investigation was not possible beyond i mile from the station cn account of the want of suitable maps.

The value of gravity adopted for Dehra Dún is $979^{\circ} 063$.

TABLE VII.

Station.	Latitude.	Height above M. S. L.	Observed value of gravity $=g$ 。	Corrections			Value of gravity at Sea level.$=g^{o} .$
				for height.	for mass.	Orographical.	
	"	Feet.	Dynes.				Dynes.
Pangalore	13041	$3{ }^{18}$	978.025	+0.290	-0'109	$\pm 0^{\circ} 000$	$97^{8 \cdot 206}$
Mysore . -	$\begin{array}{llll}12 & 18 & 52\end{array}$	2501	978.045	+0.233	-0.087	$\pm 0^{\prime} 000$	978'191
Edgar Shaft, underground.	$\begin{array}{lll}12 & 55 & 46\end{array}$	328	$978 \cdot 133$	+0.031	-0.OII	+0.085	$97^{8 \cdot 238}$
Edgar Shaft, surface .	$\begin{array}{lll}12 & 55 & 47\end{array}$	2945	$978 \cdot 676$	+0.27t	-0.103	10'000	978'247
Salem	II 405	948	9781116	+0.088	-0.033	+0.001	978•172
Yercaud	$\begin{array}{llll}\text { It } & 46 & 56\end{array}$	4493	977'909	$+0.48 \mathrm{l}$	-0.157	+0.011	978.180
Ootacamund	$\begin{array}{llll}11 & 24 & 37\end{array}$	7395	977*735	+0.689	-0.258	+0.005	978171
Kodaikánal	$10 \quad 13 \quad 50$	7665	977.643	+0.714	-0.268	+0.003	978.092

Table VIII gives a comparison between the value $g_{0}^{\prime \prime}$ and the theoretical valu γ_{0} for the latitud a for the station of observation.

TABLE VIII.

000. At all the stations visited the force of gravity has been, thus, fournd to be in defect. The deficiency varies in amount from 0.013 at the Edgar shaft, surface station, to 0.072 at Kodaikánal. It is at once noticeable that these deficiencies, found in Southern India, are considerably smaller than the values determined at stations similarly situated, as regards height above M.S.L. in North Indian and sub-Himalayan regions. First, however, considering the South Indian results by themselves, we see that the deficiency in amount is not a function of the height above sea level. Three stations are situated on the Mysore plateau at not very different heights. At two of these, Mysore and Bangalore, the deficiency is nearly the same in anount, but at the third, the Edgar shaft, surface station, it is considerably less than at the two former. The difference of height between Yercaud and Salem is 3,500 feet, the distance
between the two places being about 9 miles, and yet the value of $\mathrm{g}_{0}{ }^{\prime \prime}-\gamma_{0}$ changes by only 0.003 , being slightly greater at the lower station. The defects at Yercaud and Ootacamund are almost the same though the difference in height between the two stations is 2,900 feet. At Kodaikánal the value of the defect is more than twice that at Ootacamund though the former station is only 270 feet above the latter.

In Table IX are compared the results of the operations in Southern India with those previously determined in the Northern and the sub-Himalayan regions.

Table IX.

Station,	Situation.	Height.	$g_{0}{ }^{\prime \prime}-\gamma 0$	Thickness of corresponding disc.	Percentage of height.
		Feet.	Dynes.	Feet.	\%
Ootacamund . -	Hills, South India .	7395	-0.032	910	12
Kodaikánal . . .	" " " .	7665	-0.072	2050	27
Simla	Himalayas . .	7043	-0.119	33^{80}	48
Darjeeling	"	6966	-0.143	4070	60
Mussooree Back). (Camel's	" •	6924	$\rightarrow 0.110$	3^{100}	45
Mussooree (Dunseverick)	"	7129	-0.115	3270	46
Yercaud	Hills, South India .	4493	-0.037	1050	23
Kurseong	Himalayas	4913	-0.130	3700	75
Quetta . . .	Hills, Baluchistan .	55^{20}	-0.139	3920	71
Mach	" "	3522	-0.117	3270	93
Bangalore	Plateau, South India .	3118	-0.057	1620	52
Edgar shalt, surface	" "	2945	-0.013	370	13
Mysore	" "	2501	-0.045	1280	51
Rájpur . . .	Submontane, North india	3321	-0.124	3550	107
Asárori -	" " "	2467	-0.112	3180	129
Kálka	" " "	2202	-0.085	2370	107
Dehra Dún	" "	2239	-0.126	3440	154
Saleın	Submontane plains, South India.	948	-0.040	1140	120
Hardwár	Submontane plains, North India.	949	-0.114	3270	344
Roorkee	" " "	867	-0.107	3040	350
Ludhiána	" "	835	-0.048	1310	157
Nojli	" "	879	-0.095	2730	311

In this table are also given the thicknesses of a disc of matter of density $2 \cdot 8$, which would be capable of producing an attraction equal to the quantity $\mathrm{g}_{0}{ }^{\prime \prime}-\gamma_{0}$ and the percentage of the height of the station represented by this thickness. It is very noticeable how much greater the quantities $\mathrm{g}_{0}{ }^{\prime \prime}-\gamma_{0}$ and the percentages of height are for places in the Himalayan region than for the South Indian stations of like height. It is seen too, that the percentage of height gradually becomes greater as the height of the station gets less. This is perhaps due to the fact that the quantity $g_{\circ}{ }^{\prime \prime}-\gamma_{\circ}$ maintains a fairly uniform value over a region of considerable area bordering the mountain mass, while, as we move away from the same mass, the height of the station gets less. That the deficiency in the force gravity will not be a function of the height of the station above sea level, is what the theory of isostacy teaches us to expect. We shall expect to find the effects caused by the sinking of a mountain mass into the subjacent media not localized but distributed over a certain area round the mass and the actual value of the deficiency of gravity at places at the foot of a mountain of about the same order of magnitude as that at the top. When considering the amount of deficiency or otherwise of gravity at a station, it is not sufficient to refer to the height of only the station itself, that is, of one particular point. We should take into account the average height of a more or less extensive region in which that station is situated. We thus find some explanation of why it is that the values of $\mathrm{g}_{0}{ }^{\prime \prime}-\gamma_{0}$ at the South India stations are so much less than at places at similar heights, above the sea, in the Hinnalayan region. The former stations are situated on approximately the summits of the mountain mass and their heights are greater than the average for the elevated region, while the Himalayan stations are, after all, but points on the outer slopes of the main mountain mass, the average height of which is considerably greater than that of the station. With the relatively large value of $\mathrm{g}_{\mathrm{o}}^{\prime \prime}-\gamma_{\mathrm{o}}$ at the Himalayan points must be kept in mind the great height of the general level of the tracts lying immediately to the north. The amounts of the deficiency of gravity at Simla, Mussooree and Darjeeling are probably more appropriate to a general altitude of 14,000 or 15,000 than to a height of 7,000.

The difference between the northern and southern stations, generally speaking in this :-the latter are placed approximately on the summits of isolated hill masses, while the former are really half way down the outer scarps of an extensive highly elevated tract.
ooo. At Bangalore, the observations were made at the S. W. end of the Base Line, where Basevi swung the Invariable pendulums in September, 1868. This is the eighth of the old pendulum station that has been revisited. In Volume V, of the Professional Volumes, are given the vibration numbers, N , for the Invariable pendulums swung at these eight places. If we take Dehra Dún as the Base station, and take out the difference, dN , between the values of N at Dehra and at each of the other stations and convert dN into terms of g, in dynes, by means of the relation,

$$
d g:=\frac{\partial \mathrm{dN} g}{\mathrm{~N}}
$$

using for g, $978.9{ }^{6} 2$, Basevi's value for Dehra, and for N the quantity 86020.86 we get the following:-

TABLE X.
Basevi's Values of $d g$ compared with those recently determined.

	Station.		N	dN	$\begin{aligned} & \text { Corresponding } \\ & \text { dy } \\ & \text { in Dynes. } \end{aligned}$	Recently observed value of $d g$.	Difference in values of dg.
Madras		.	85989.03	-31.83	-0.724	-0.784	-0.060
Colába			96005	-1567	-0.357	-0.432	-0.075
Kaliána			$86027 \cdot 25$	+6.39	+0.145	+0.091	-0.054
Nojli			86027.62	$+6.76$	+0.154	+0.080	-0.074
Dehra		-	86020.86	-•• ${ }^{\prime}$
Mussooree		,	86011.59	-9.27	-0.211	-0.270	-0.059
Mián Mír		-	86034.55	+13.69	+0.312	$+0.320$	+0.008
Bangalore	-	-	85978.49	-42*37	-0.964	-1'038	-0.074

It is noticeable that whereas the difference in the last column of the table is generally negative and on an average about $0 \circ 06$, in amount, in the case of Mián Mir where a special stand was used, it is positive in sign and considerably smaller in value. This special stand was of a lighter construction than that usually used and was designed specially for the expedition to the high lying station at More. It must be noted that this stand was not employed at the Base station.

The recently determined value of g at Dehra Dún is $979{ }^{\circ} 063$, which differs by $+0 \cdot 101$ from Basevi's value, $97^{\circ} 962$. Combining this difference with those of the last column of the Table above, we get the quantities below.

TABLE XI.

Station.			Difference from Table X.	Difference in Base value.	Difference in value of g.
Madras	- •	- .	-0.060	...	+0.041
Colába	- -	- -	-0.075	...	+0.026
Kaliána	- -	- •	-0.054	...	+0.047
Nojli	-	. \cdot	-0.074	...	+6.027
Dehra		- •	\cdots	+0.10s	+0.10s
Mussooree	. \cdot	- .	-0.059	\cdots	+0.042
Mián Mir	- .	- •	+0.008	...	+0.sog
Bangalore	- .	- •	-0.074	...	+0.027

It is evident that the greater part of the difference between the new and old values of g, is due to the discrepancy between the value adopted for the Base station. The importance of the adopted Base value is obvious, and it need scarcely be remarked that advantage should be taken of every opportunity that offers a means of collecting independent evidence of the degree of reliance that may be placed in this value. The recent value has already been supported by an independently determined connection with Europe. In 1905, Dr. Hecker connected Jalpaiguri with Potsdam. His observations gave as result

$$
g \text { at Jalpaiguri }=978^{\prime} \xi^{24} .
$$

The result of Major Lenox-Conyngham's observations, made at the same time was

$$
g \text { at Jalpaiguri }=978.922 .
$$

Both values are referable to $g=98{ }^{\circ}{ }^{\circ} 274$ at Potsdam, Dr. Hecker's result directly, and Major Lenox-Conyngham's indirectly, through Dehra Dún and Kew.

The close agreement of the two values shows that it is improbable that any large errors exist in the quantities adopted for Dehra and Kew.

THE SHAN STATES SURVEY OF INDIA.

Extract from the Narrative Report of Captain R. H. Phillimore, R.E., in charge No. 11 Party (Shan States) season, 1907-08.

Work this season lay in the extreme south-eastern corner of Kēng Tung State, being carried on along that portion of the Siam frontier that runs eastwards from Loi Tüm (longitude $99^{\circ} 30^{\prime}$) to its junction with the French frontier, in sheet $102 \frac{\mathrm{D}}{3}$ and down the Mekong river from latitude $2 \mathrm{I}^{\circ} \mathrm{I}^{\prime}$ to this same junction. The Mekong river is the boundary between French and British territory for $1 \hat{3} 0$ miles. On the French side of the river is the "Province du Haut Mè Hkong", under a commissioner whose head-quarters are at Bān Hwè-sai, about 40 miles down the Mekong from the point where it leaves British territory. This province forms part of a large administrative area, Laos, whose head-quarters are at Luang Prabang. Beyond this Laos territory lie Tong King, Anam, Cochin-China and Cambodia. The "Province du Haut Mè Hkong " covers approximately the Shan States of Kēng Hkawng, and Möng Hsing, whose population is mainly $L \bar{u}$, the same race that inhabits the eastern plains of Kēng Tung State. Before the Franco-British treaty of 1896, which declared the Mekong the dividing line between French and British territory, Möng Hsing was a tributary state to Kēng Tung, and the Kēng Tung Sawbwa collected revenue from several other districts on the left bank of the Mekong and also in a few parts of Kẽng Sen which is now Siamese territory. However, during the last century these border districts had been continually changing rulers, the Shans, Siamese and Chinese being constantly at warfare.

In the hilly country of sheet $102 \frac{D}{1}$, is a circle, whose headman, or Hpaya, is a $\mathrm{Mu}-\mathrm{hsö}$ by race; his circle includes several villages of other tribes, besides a few Lū villages. In the country to the south the population is mixed, there being a preponderance of western Shans. These immigrated into the country some 20 or 30 years back, when the western states were much disturbed by civil war. They found this corner of Kēng Tung State very thinly populated, being on the Siamese frontier and open to attacks from marauding bands. Some districts such as Möng Kwan in sheet $93 \frac{\mathrm{P}}{11}$ and Möng Hpöngnoi in $102 \frac{\mathrm{D}}{3}$, are regular western Shan colonies, where Tai only is written and no Hkön found at all.

At Hawnglük in sheet $93 \frac{\mathrm{P}}{1 \mathrm{~s}^{\prime}}$ Möng Hai, Ho-pūng and Möng Kō in $93 \frac{\mathrm{P}}{\mathrm{P}^{\prime}}$ are found, besides Hkōn from Kēng Tung, western Shans, Lū, Lem from the Chinese border, and Youn from Siam. These all belong to Shan stock and intermarry frerly, though keeping up distinctions in dialect, dress, ornaments, etc.

Of the hill tribes those most frequently met with were Kaw, Mu-hso, and Tai-loi ; the latter being more numerous in sheets $\operatorname{tos} \frac{\mathrm{C}}{4,8}$. These Tai-loi with the E_{n}, a somewhat similar race, are Budhists, unlike the other hill tribes, and build large permanent villages with masonry kyaungs and wäts. Tle
hillsides round these villages become practically denuded of all forest trees; patches are rleared and cultivated for two or three seasons and then left fallow for five years or so, whilst other patches are worked. Great care is taken that the fallows should not take fire, for the thick growth that springs up is supposed to benefit the soil more if left unfired until just before re-cultivation. The other hill tribes, who are of a nomadic disposition, constantly shift their villages and move on to fresh fields, never returning to a field once it has been deserted. These tribes, Kaw, Mu-hsö, etc., are reckless of the extent to which they fire the hills. The growth that springs up on the deserted fields is exceedingly difficult to get about in; and if a surveyor has much of such ground in his work his outturn suffers considerably. Very often a surveyor is able to fire the jungle two or three days in advance; he is then able to do in one day an area that might otherwise have taken him two or three. One surveyor who tried this near an En village found that the whole village turned out to extinguish the flames, and save the fallows from burning.

Two tribes were met with in sheet $102 \frac{C}{12}$ who have no other settlements within British territory, Yao and Miao; they are of Chinese stock, build their houses on the ground in regular Chinese fashion, and talk Chinese in preference to Shan. Both tribes seem much superior to the other hill tribes; they appear better fed and are certainly more cleanly.

It is an extraordinary feature of this country that all these different tribes live side by side, keeping quite distinct from each other in race and language and yet never falling out. There seem to be so many matters over which it would appear only human to quarrel, water-supply, the burning of jungle, thefts or two villages wishing to clear the same bit of ground for a village site or a field; but nothing of this sort is heard of; the amazement at this expressed by an Afridi sepoy, attached as surveyor to the party, is hardly surprising.

There is never the slightest difficulty in getting help from villagers of any tribe, if they are approached in the right manner through their headinen. The only occasion on which a surveyor was refused help occurred at a Yao village in the north of sheet $102 \frac{\mathrm{C}}{12}$. A few villages here belonged to the Möng Lwè circle, the capital of which is away to the north, outside this season's work. The headman of Möng Lwè had not been warned of the survey going on, as it was not known that any of his villages would fall into the area. The Yao could not read the Hkön letter of authority which the surveyor shewed them, and they refused coolies, guides and permission to camp in their villages. The officer in charge was inspecting the surveyor shortly afterwards, and wrote off to the Möng Lwè headman. A Hkön official came up the hill the following week and the Yao headman disappeared into the jungle; he left all his household property at home, however, which was a mistake, for his pigs and fowls were all swooped up and carried off to Möng Lwè. The surveyor was most politely treated by all the hill men after that.

The officer in charge, the camp officers and the triangulators were accompanied by Hkön clerks from the Sawbwa's court in Kēng Tung. The man with the officer in charge was particularly useful; being influential he contributed much to the courtesy shewn to all members of the party by the various headmen. One case was reported in which an officer's interpreter had requisitioned guides from a village and not paid them; he had further "fined" the headman ten rupees for producing one guide ton few. The Assistant

Superintendent, Kēng Tung, handed the case over to the Officer in charge, who after investigation discharged the interpreter from the party, making him refund the ten rupees. This interpreter had been known to be rather a bad lot, and it is hoped that there is not very much of this sort of extortion going on ; the Shans would be quick enough to report it if there were.

The most interesting feature of the country under survey was the Mekong river, which formed the eastern limits of work. The Shan name is Nam Hkawng or Mè Hkawng, the latter name having been accepted for popular use in the distorted English form Mekong. To a traveller in the country, the correct pronunciation is a matter of importance; the Shan name for the Salween river is Nam Hkong with the "o" sound long as in "toe "; confusion between the two rivers might be disastrous. The Mekong is full of rapids and the highest point to which steamers have ever been brought is Tāng Aw, latitude $20^{\circ} 40^{\prime}$, where in 1893 the French built a small fort on the left bank. There is now a regular steamer service up to Bān Hwè-sai some sixty miles below Tāng Aw. The Laos bring large country boats as far as Tāng Aw, where goods are landed and shipped, being conveyed to and from Kēng Tung via Möng Len and Möng Hpayāk. Except for about 30 miles below Kēng Lap in sheets $102 \frac{\mathrm{D}}{519}$ and for about 10 miles in sheet $102 \frac{\mathrm{D}}{3}$ the course of the river is through a defile. In these open lengths the river bed widens to nearly a thousand yards, but elsewhere it is seldom as wide as five hundred yards. The river is in flood from about August to October, and ir must then be a very fine sight. During the dry season the water falls about 30 or 40 feet, and its width contracts to less than three hundred yards; at rapids it is as narrow as fifty yards, whilst only in the reaches at Pa-liao and above Hsōp Hōk is its full width maintained during the dry season.

The defile of the Mekong is not so striking as that of the Salween in the same latitude ; the hills that immediately enclose it not running up so steep, or to such great heights : but it is a very fine river, and is distinctly impressive at low water, swirling down between walls of rock that stand up 30 feet or so above water level. There are several villages along both banks of the river and ferries at frequent intervals. Boats, both dug-outs and rafts, are used for communication up and down the river between village and village. During the dry season, mule and bullock caravans find an excellent route along the bed of the river, this forming quite a highway between Kēng Lap and Hsōp Yawng, where the caravans turn up towards Möng Yawng. During the rains this route cannot be used at all, and caravans use, a road over the hills from Möng Yawng to Pa -liao and so on to Kēng Lap.

The French have toll posts at most of the ferries, but no toll is collected on the British side.

The height of the river bed above mean sea level is $\mathrm{t}, 505$ feet at Kenng Kum, latıtude $21^{\circ} 6^{\prime}$ and 1,199 feet at Hsōp Hōk, latitude $20^{\circ} 20^{\prime}$, where it leaves British territory.

The chief tributaries on the right bank of the Mekong falling under this year's survey are the Nam Yawng, Nam Len and the Nam Hök. The Nam Yawng drains sheets $102 \frac{\mathrm{C}}{4,8}$, with the large plain of Möng Yawng. In its course down the defile through the riverain range of hills, the Nam Xawng
is unfordable even in the dry season. The only ferry is just at i.s mouth, worked by the villagers of Wān Hsöp Yawng.

The Nam Len drains the southern slopes of the Loi Mwè range, and following south-east drains sheets $93 \frac{\mathrm{P}}{13}$ with the Möng Hpayāk plain, and $102 \frac{\mathrm{D}}{2}$ with the Möng Len plain. In the gorge between Möng Hpayāk and Möng Len the course is rapid and strewn with rocks, and the river can only be crossed by a ferry at Möng Pāng. Through the Möng Len plain the Nam Len widens out to 200 yards and is fordable at many points during the dry season.

The Nam Hök drains sheet $93 \frac{\mathrm{P}}{14}$, and passes through the plain of Möng Hai, flowing south into the flat country which lies along the Siamese frontier; close to Hawnglük, it is joined on its right bank by the Nam Hsai, a regular nountain torrent which drains sheets $93 \frac{\mathrm{P}}{11, i 5}$. From Hawnglük eastwards to the Mekong the Nam Hōk lorms the boundary between Kēng Tung and Siam with a course devious to an extraordinary degree. In this length it cannot be crossed by ford, nor are there any ferries working.

The ground falling in sheets $102 \frac{\mathrm{C}}{4,8,12}$ and $\frac{\mathrm{D}}{5}$ was all good sketching ground, with hills running to about 6,000 feet, bold featured and covered mostly with open pine forest. In the neighbourhood of Langhsät in sheet $102 \frac{\mathrm{C}}{4}$, the ground is of limestone formation, very much broken. The hills abound in caverns and punchbowls, and several streams disappear into the ground altogether, some coming up again two or three miles off. A good deal of saltpetre is collected in some of the caves and near Möng Ngam in sheet $102 \frac{\mathrm{D}}{1}$ the villagers manufacture and export gun•powder on a small scale.

The Mong Yawng plain is about 32 square miles in area, with a general height of 1,800 feet above the sea. It is covered with rice cultivation and is thickly populated. The city is not very imposing nor is the bazaar of any great size or importance. The district is however a wealthy one, and in days gone by was independent of Kēng Tung ; the Myoza is now a man of considerable position in the State. There is a pagoda of some renown on a low hill to the south-west of the plain six miles from the city, by name the Htätntong Sawmyaung. Its construction is of very early date, and it is similar in design to the famous Angcor ruins in Cambodia, It is held in great veneration throughout Kēng Tung and is said to be built over seven hairs of the Budldha, and to have been visited by the great King Asoka.

Möng Len, falling in sheet 102, , is a great trade centre. Cdravans from Kēng Tung branch off from here in three directions; eastwards to Kēng Lap ferry and so to Möng Hsing ; southwards to Tāng Aw on the Mekong where boats are taken; and westwards to Hawnglük en route for Chengmai in Siam. The greater volume of trade seems to flow in the Siamese direction. Much merchandise comes straight through from China to Siam in unbroken bulk; lead, tea, salt, etc., coming down through Kēng Tung, Möng Hpayāk, Möng Len and Hawnglük. Many of the caravans wander round on their return journey buying up opium and cotton from hill villages.

The main roads through these southern sheets are excellent; that is, taken by the standard of other roads in the State. The country in these sheets $102 \frac{\mathrm{D}}{2,3}$, and $93 \frac{\mathrm{P}}{15}$ is low lying and unintercsting; the hills are rather difficult for
surveying, being not particularly steep, and covered with thick jungle mostly bamboo. Along the Nam Hōk is a fair extent of level grass land, and a certain amount of teak. This is the only teak found in the Mekong drainage within British territory worthl speakingíof; it is not at present of any great size nor in any quantity|; a sale is now being arranged with a Frenchman who will float the logs down the Mekong.

The country triangulated along the Chinese frontier is of a very different nature to most of that under detail survey this season. It is a mass of steep hills, with ranges running to over 8,000 feet, and intersected by two great rivers, the Nam Lam and the Nam Lwè ; these unite in sheet $102 \frac{\mathrm{C}}{7}$ and flow into the Mekong; the height of their junction above sea level is about 1,700 feet. Both these rivers flow through narrow defiles, which hardly open out anywhere to give room for rice cultivation. The whole country is very steep and intricate, so that it is difficult to get lover the ground; however, the jungle is not heavy and the very steepness of the hills makes them easy to sketch.

INDEX MAP
to illustrate progress of modern
surveys in the
SHAN STATES.
Sheet 93.

REFERENCES

Surveyed in previous years.
Do......in year under report,
Triangulated in previous years.
Do........during year under report.

Surweya Geneial's Office, \mathscr{H}_{0}. 13, Wood Shect, Condouttr, $16^{\text {M.Cacar: }} 1910$.
 Gonecal of India, has the honourt to puteont Librarians Smitheonian Instinte'
\qquad
 India duting 190\%-08, and nequests the fravou of an actinouldedyment of the receitht of the same.

[^0]: 1. General remarks on working.
 2. Mean values of H, F, and declination constants.
 3. Mean values of base lines.
 4. Mean, scale value and temperature range.
 5. Mean aicnthly values of magnetic elements and secular change, 1906.07.
[^1]: - For each observatory the following tables are given :-

 1. Absolute observations of dip up to end of March 1907, after which time the results from the V. F. magnetographs vailable.
 2. Hourly means of declination, horizontal Corce, vertical force and dip (corrected for temperature) froin 5 selected
 days per month.
 3. Diurnal inequality of each of the above deduced from 2.
 \dagger These values are given to the nearest minute in declination and dip and 10γ in H . F.
 They are uncorrected for diurnal variation, disturbance, instrumental difference and secular change.
[^2]: - These bench-marks will be connected during the coming field season, 1908-09, if completed in time.

